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I 
t is an honor  and a pleasure to 
accept the Alan Tur ing  
Award. My own work has 

been on computer  systems, 
and that will be my theme. 
The  essence of  systems is that 
they are integrat ing efforts, requir- 
ing broad knowledge of  the prob- 
lem area to be addressed,  and the 
detailed knowledge required is 
rarely held by one person. Thus the 
work of  systems is usually done by 
teams. Hence I am accepting this 
award on behalf  of  the many with 
whom I have worked as much as for 
myself. It is not practical to name all 
the individuals who contributed.  
Nevertheless, I would like to give 
special mention to Marjorie Dag- 
gett and Bob Daley for their  parts 
in the birth o f  CTSS and to Bob 
Fano and the late Ted Glaser for 
their  critical contributions to the 
development  of  the Muhics System. 

Let me turn now to the title of  
this talk: "On Building Systems 
That  Will Fail." Of  course the title I 
chose was a teaser. I considered and 
discarded some al ternate titles: "On 
Building Messy Systems," but  it 
seemed too frivolous and suggests 
there is no systematic approach.  
"On Mastering System Complexity" 
sounded like I have all the answers. 
The  title that came closest, "On 
Building Systems that are likely to 
have Failures" did  not have the 
nuance of  inevitability that I 
wanted to suggest. 

What  I am really trying to ad- 
dress is the class of  systems that for 
want of  a better  phrase, I will call 
"ambitious systems." It almost goes 
without saying that ambitious sys- 
tems never quite work as expected. 
Things usually go w r o n g - -  
sometimes in dramatic ways. And 
this leads me to my main thesis, 
namely, that the question to ask 
when designing such systems is not: 
"/f something will go wrong, but  
when it will go wrong?" 

Some Examples 
Now, ambitious systems that fail are 
really much more common than we 
may realize. In fact in some circum- 
stances we strive for them, revelling 

in the excitement of  the unex- 
pected. For  example,  let me remind 
you of  our  national sport  of  foot- 
ball. The  whole object of  the game 
is for each team to play at the limit 
of  its abilities. Besides the sheer 
physical skill required,  one has the 
strategic intricacies, the ability to 
audibilize, and the quickness to 
react to the unexpec ted - -a l l  a deep 
part  of  the game. Of  course, occa- 
sionally one team approaches per- 
fection, all the plays work, and the 
game becomes dull. 

Another  example of  a system 
that is too ambitious for perfection 
is military warfare. The  same ele- 
ments are there with opposing sides 
having to constantly improvise and 
deal with the unexpected.  In fact 
we get from the military that won- 
derful  acronym, SNAFU, which is 
politely translated as "situation nor-  
mal, all fouled up." And  if any of  
you are still doubtful ,  consider how 
rapidly the phrases "precision 
bombing" and "surgical strikes" are 
replaced by "the fog of  war" and 
"casualties from friendly fire" as 
soon as hostilities begin. 

On a somewhat more whimsical 
note, let me offer  driving in Boston 
as an example of  systems that will 
fail. Automobile traffic is an excel- 
lent case of  distr ibuted control  with 
a common set of  protocols called 
traffic regulations. The  Boston area 
is notorious for the free interpreta-  
tions drivers make of  these pesky 
regulations, and perhaps  the epit- 
ome of  it occurs in the arena of  the 
traffic rotary. A case can be made 
for rotaries. They are efficient. 
The re  is no need to wait for slug- 
gish traffic signals. They  are direct. 
And  they offer great  opportuni t ies  
for creative improvisation, thereby 
adding  zest to the sport  of  driving. 

One of  the most effective strate- 
gies is for a driver  approaching  a 
rotary to rigidly fix his or her  head, 
staring forward, of  course, secretly 
using per ipheral  vision to the limit. 
It  is even more effective if the 
driver  on enter ing the rotary, 
speeds up, and some drivers embel- 
lish this last step by adopt ing a look 
of  maniacal glee. The  effect is, o f  

course, one of  intimidation, and a 
pecking o rde r  quickly develops. 

The  only reason there are not 
more accidents is that most drivers 
have a second component  to the 
strategy, namely, they assume 
everyone else may be c razy - - they  
are often c o r r e c t - - a n d  every driver  
is really p repared  to stop with 
inches to spare. Again we see an 
example of  a system where ambi- 
tious tactics and p ruden t  caution 
lead to an effective solution. 

So far, the examples I have given 
may suggest that failures of  ambi- 
tious systems come from the human 
element  and that at least the techni- 
cal parts of  the system can be built 
correctly. In  particular,  turning to 
computer  systems, it is only a mat- 
ter of  getting the code debugged.  
Some assume rigorous testing will 
do the job.  Some put  their  hopes in 
proving p rogram correctness. But 
unfortunately,  there  are many cases 
for which none of  these techniques 
will always work [1]. Let me offer a 
modest  example illustrated in Fig- 
ure 1. 

Consider  the case of  an elaborate 
numerical  calculation with a vari- 
able, f ,  represent ing some physical 
value, being calculated for a set of  
points over a range of  a parameter ,  
t. Now the proper ty  of  physical 
variables is that they normally do 
not exhibit abrupt  changes or  dis- 
continuities. 

So what has happened  here? I f  
we look at the expression for f ,  we 
see it is the result of  a constant, k, 
added  to the product  of  two other  
functions, g and h. Looking further,  
we see that the function g has a be- 
havior that is exponentially increas- 
ing with t. The  function h, on the 
other  hand, is exponential ly de- 
creasing with t. The  resultant  prod-  
uct of  g and h is almost constant 
with increasing t until an abrupt  
j u m p  occurs and the curve for f 
goes flat. 

What  has gone wrong? The  an- 
swer is that there  has been floating- 
point underf low at the critical point  
in the curve, i.e., the representat ion 
of  the negative exponent  has ex- 
ceeded the field size in the floating- 
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point  representat ion for this partic- 
ular  computer ,  and the hardware  
has automatically set the value for 
the function h to zero. Often this is 
reasonable since small numbers  are 
correctly approximated  by z e r o - -  
but  not in this case, where our  re- 
sults are grossly wrong. Worse yet, 
since the computat ion o f f  might  be 
internal,  it is easy to imagine that  
the failure shown here  would not  
be noticed. 

Because correctly handl ing the 
pathology that this example  repre-  
sents is an extra engineer ing 
bother ,  it should not  be surpris ing 
that the problem of  underf low is 
frequently ignored.  But the larger  
lesson to be learned f rom this ex- 
ample  is that subtle mistakes are 
very difficult to avoid and to some 
extent  are inevitable. 

I encountered  my next example  
when I was a graduate  s tudent  pro-  
g ramming  on the pioneer ing 
Whir lwind computer .  One night  
while awaiting my turn to use it, the 
graduate  s tudent  before  me began 
complaining of  how "tough" some 
of  his calculations were. He said he 
was comput ing  the vibrational fre- 
quencies of  a part icular  wing struc- 
ture for a series of  cases. In fact, his 
equations were cubics, and he was 
using the iterative Newton-Raph-  
son method.  For  reasons he did  not  
unders tand,  his method was find- 
ing one of  the roots, but  not  "con- 
verging" for the others. He was try- 
ing to fix this situation by changing 
his p rogram so that when he en- 
countered  one of  these tough roots, 
the p rogram would abandon the 
i teration after  a f ixed number  of  
tries. 

Now there were several things 
wrong: First, the coefficients to his 
cubic equations were based on ex- 
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perimental  data and some of  his 
points were simply bad. Therefore ,  
as Figure 2 illustrates, he only had 
one real root  and a pair  of  im- 
aginaries. Thus  his iterative 
method could never converge for 
the second and third roots and the 
value of  his first root  was pure  gar- 
bage. Second, cubic equations have 
an exact analytic closed form solu- 
tion so that it was entirely unneces- 
sary to use an iterative method.  
And  third, based on his incomplete 
model  and unders tanding  of  what 
was happening,  he exercised very 
poor  j u d g m e n t  in patching his pro- 
gram to ignore values that were 
seemingly difficult to compute.  

Ambitious System Properties 
Let me turn next to some of  the 
general  propert ies  of  ambitious sys- 
tems. First, they are often vast and 
have significant organizational 
structures going beyond that of  
simple replication. Second, they are 
frequently complicated or  elaborate 
and are too much for even a small 
group to develop. Thi rd ,  if  they 
really are ambitious, they are push- 
ing the envelope of  what people 
know how to do, and as a result 
there is always a level of  uncertainty 
about when completion is possible. 
Because one has to be an optimist  to 
begin an ambitious project, it is not 
surprising that underest imat ion of  
completion time is the norm. 
Fourth,  ambitious systems when 
they work, often break new 
ground,  offer  new services and 
soon become indispensable. Finally, 
it is often the case that ambitious 
systems by virtue of  having opened 
up a new domain of  usage, invite a 
flood of  improvements  and 
changes. 

Now one could argue that ambi- 
tious systems are really only diffi- 
cult the first time or  two. It is really 
only a mat ter  of  learning how to do 
it. Once one has, then one simply 
draws up the appropr ia te  PERT 
charts, hires good managers,  en- 
sures an adequate  budget  and gets 
on with it. Perhaps there are some 
in3tances where this works, but at 
least in the area of  computer  sys- 

tems, there  is a fundamenta l  reason 
it does not. 

A key reason we cannot seem to 
get ambitious systems right is 
change. The  computer  field is in- 
toxicated with change. We have 
seen galloping growth over a pe- 
riod of  four  decades and it still does 
not seem to be slowing down. The  
field is not mature  yet and already 
it accounts for a significant percent-  
age of  the Gross National Product  
both directly and indirectly. More 
important ly  the computer  revolu- 
t i o n - t h i s  second industrial  revolu- 
t i o n - h a s  changed our  life-styles 
and allowed the growth of  countless 
new application areas. And  all this 
change and growth not only has 
changed the world we live in, but  
has raised our  expectations, spur- 
r ing on increasingly ambitious sys- 
tems in such diverse areas as airline 
reservations, banking, credit  cards, 
and air traffic control  to name only 
a few. 

Behind the incredible growth of  
the computer  industry is, o f  course, 
the equally mind-boggling change 
that has occurred in the raw perfor-  
mance of  digital logic. Figure 3, 
which is not precise and which 
many of  you have seen before in 
some form, gives the per formance  
of  a top-of-the-line computer  by 
decade. The  ordinate  in MIPS is 
logarithmic as you can see. In  par- 
ticular in the last decade, the graph 
becomes problem dependen t  so 
that the upper  r ight-hand end of  
the line should break up into some 
sort of  whiskers as more  and more 
computers  are tailored for special 
applications and for parallelism. 

Complicating matters too is that 
parallelism is not a solution for 
every problem. Certain calculations 
that are intrinsically serial, such as 
rocket trajectories, derive very lim- 
ited benefit  from parallel comput-  
ers. And  one of  course is reminded  
of  the old joke  about the Army way 
of  speeding up pregnancy by hav- 
ing nine women spend one month 
at the task. 

As Figure 4 makes clear, it is not  
jus t  per formance  that has fueled 
growth but  ra ther  cost/perfor- 

mance, or  simply put, favorable 
economics. The  graph is an over- 
simplification, but  represents  the 
cost for a given performance com- 
puter  model  over the last four  dec- 
ades. Again the ordinate  is logarith- 
mic, going from 10 million dollars 
in 1950 down to one thousand dol- 
lars in 1990. As we approach  the 
present,  cor responding to a per- 
sonal computer ,  the graph really 
should become more complicated 
since one consequence of  comput-  
ers becoming super-cheap is that 
increasingly, they are being embed- 
ded in other  equipment .  The  mod- 
ern automobile is but  one example.  

A n d  it remains 

to be seen 
how general- 
purpose the 
current wave 
of palm-sized 
computers 
will be with 
their stylus 
inputs. 

Further ,  when we look at a pho- 
tograph taken a round  1960 of  a 
"machine room" staffed with one 
lone operator ,  we are reminded  of  
the fantastic changes that have oc- 
curred in computer  technology. 
The  boxes are huge, shower-stall- 
sized, and the overall impression is 
of  some small factory. You were 
supposed to be impressed and the 
opera tor  was expected to maintain 
decorum by wearing a necktie. And 
if he did not, at least you could be 
sure an IBM maintenance engineer  
would. 

Another  r eminder  of  the im- 
mense technological change which 
has occurred is in the physical di- 
mensions of  the main memories of  
computers .  For  example,  if one 
looks at old photographs  taken in 
the mid-1950s of  core memory sys- 
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tems, one typically sees a core mem- 
ory plane roughly the size of  a ten- 
nis racquet head which could hold 
about 1,000 bits of  information.  
Contrast  that with today's 4megabit  
memory  chips that are smaller than 
one's thumb. 

The  basis of  the Award today is 
largely for my work on two pio- 
neer ing t ime-sharing systems, 

CTSS [5, 6] and Multics [7, 9]. In- 
deed,  it is f rom my involvement 
with those two systems that I gained 
the system-building perspective I 
am offering. It therefore  seems 
appropr ia te  to take a br ief  retro- 
spective look at these two systems as 
examples of  ambitious systems and 
to explore the reasons why the 
complexity of  the tasks involved 
made it almost impossible to build 
the systems correctly the first time 
[2]. 

CTSS, The Compatible Time- 
Sharing System 
Looking first at CTSS, let us re- 
member  the dark  ages that existed 
then. This was the early 1960s. The  
computers  of  the day were big and 
expensive, and the administrators  
of  comput ing centers felt obliged to 
husband the precious resource. 
Users, i.e., p rogrammers ,  were 
expected to submit a comput ing job  
as a deck of  punched  cards. These  
were then combined into a batch 
with o ther  jobs  onto a magnetic 
tape and the tape was processed by 
the computer  opera t ing  system. It 
had all the g lamour  and excitement 
of  d ropp ing  one's clothes off  at a 
laundromat .  

The  problem was that even for a 
trivial input  typing mistake, the job  
would be aborted.  Time-sharing,  as 
most of  you know, was the solution 
to the problem of  not being able to 
interact with computers .  The  gen- 
eral vision of  modern  t ime-sharing 
was pr imari ly  spelled out  by John  
McCarthy, who I am pleased to 
note is a fea tured speaker  at this 
conference. In  England,  Christo- 
pher  Strachey independent ly  came 
up with a limited kind of  interactive 
computing,  but  it was a imed mostly 
at debugging.  Soon there were 
many groups a round  the country 
developing various forms of  inter- 
active computing,  but  in almost all 
cases, the result ing systems had sig- 
nificant limitations. 

It was in this context that my own 
group  developed our  version of  the 
t ime-sharing vision. We called it 
The  Compatible  Time-Shar ing  Sys- 
tem, or  CTSS for short. O u r  initial 
aspirations were modest.  First, the 
system was meant  to be a demon-  
stration prototype before  more 
ambitious designs being a t tempted  
by others  could be implemented.  
Second, it was in tended to handle  
genera l -purpose  programming .  
And  third,  it was meant  to make it 
possible to run most of  the large 
body of  software that had been de- 
veloped over the years in the batch- 
processing environment .  Hence the 
name. 

The  basic scheme used to run 
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CTSS was simple. The supervisor 
program, which was always in main 
memory, would commutate among 
the user programs, runn ing  each in 
turn for a brief interval with the 
help of an interval timer. As Figure 
5 indicates, user programs could do 
input/output  with the typewriter- 
like terminals and with the disk 
storage unit  as well. 

But the diagram is oversimpli- 
fied. The  key difficulty was that 
main memory was in short supply 
and not all the programs of the ac- 
tive users could remain in memory 
at once. Thus  the supervisor pro- 
gram not only had to move pro- 
grams to and from the disk storage 
unit, but it also had to act as an in- 
termediary for all I/O initiated by 
user programs. Thus  all the I/O 
lines should only point to the su- 
pervisor program. 

As a further complication, the 
supervisor program had to prevent 
user programs from trampling over 
one another. To do this required 
special hardware modifications to 
the processor such that there were 
memory bound registers that could 
only be set by the supervisor. Nev- 
ertheless, despite all the complica- 
tions, the simplicity of the initial 
supervisor program allowed it to 
occupy about 22 Kbytes of 
storageless storage than required 
for the text of this talk! 

Most of the battles of creating 
CTSS involved solving problems 
which at the time did not have stan- 
dard solutions. For example: There  
were no standard terminals. There  
were no simple modems. I/O to the 
computer  was by word and not by 
character, and worse yet, did not 
accommodate lower case letters. 
The computers of the day had nei- 
ther interrupt  timers nor  calendar 
clocks. There  was no way to prevent 
user programs from issuing raw 
I/O instructions at random. There  
was no memory protection scheme. 
And, there was no easy way to store 
large amounts of data with rela- 
tively rapid random access. 

The overall result of building 
CTSS was to change the style of 
computing, but there were several 

effects that seem worth noting. One 
of the most important  was that we 
discovered that writing interactive 
software was quite different from 
software for batch operation and 
even today, in this era of personal 
computers, the evolution of inter- 
active interfaces continues. 

In retrospect, several design de- 
cisions contributed to the success of 
CTSS, but two were key. First, we 
could do general-purpose pro- 
gramming and, in particular, de- 
velop new supervisor software 
using the system itself. Second, by 
making the system able to accom- 
modate older batch code, we inher- 
ited a wealth of older software 
ready-to-go. 

One important  consequence of 
developing CTSS was that for the 
first time, users had persistent on- 
line storage of programs and data. 
Suddenly the issues of privacy, pro- 
tection and backup of information 
had to be faced. Another  byproduct 
of the development was that be- 
cause we operated terminals via 
modems, remote operation became 
the norm. Also, the new-found 
freedom of keeping information 
on-line in the central file system 
suddenly made it especially conve- 
nient for users to share and ex- 
change information among them- 
selves. 

And there were surprises too. To 
our dismay, users who had been 
endur ing  several-hour waits be- 
tween jobs run  under  batch pro- 
cessing were suddenly restless 
when response times were more 
than a second. Moreover, many of 
the simplifying assumptions that 
had allowed CTSS to be built so 
simply, such as a one-level file sys- 
tem, suddenly began to chafe. It 
seemed like the more we did, the 
more users wanted. 

There  are two other observations 
that can be made about the CTSS 
system. First, it lasted far longer 
than we expected. Although CTSS 
had been demonstrated in primi- 
tive form in November 1961, it was 
not until 1963 that it came into wide 
use as the vehicle of a Project MAC 
Summer Study. For a time there 

were two copies of the system hard- 
ware, but by 1973 the last copy was 
turned off and scrapped primarily 
because the maintenance costs of 
the IBM 7094 hardware had be- 
come prohibitively expensive, and 
up to the bitter end, there were 
users desperately trying to get in a 
few last hours of use. 

Second, the then-new transistors 
and large random-access disk files 
were absolutely critical to the suc- 
cess of time-sharing. The previous 
generation of vacuum tubes was 
simply too unreliable for sustained 
real-time operation and, of course, 
large disk files were crucial for the 
central storage of user programs 
and data. 

A Mishap 
My central theme is to try to con- 

vince you that w h e n  

you have a 
multitude of 
novel issues 
to contend 
with while 
building a 
system, 
mistakes are 
inevitable. 
And indeed, we had a beauty while 
using CTSS. Let me describe it: 

What happened was that one af- 
ternoon at Project MAC, where 
CTSS was being used as the main 
time-sharing workhorse, any user 
who logged in, found that instead 
of the usual message-of-the-day 
typing out on his or her terminal, 
he had the entire file of user pass- 
words. This went on for 15 or 20 
minutes, until one particularly con- 
scientious user called the system 
administrator and began the con- 
versation with "Did you know that 
. . .  ?" Needless to say, there was 
general consternation with this co- 
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lossal breach of  security, the system 
was hastily shut down and the next 
twelve hours were spent heroically 
changing everyone's password. The  
question was how could this have 
happened?  Let me explain. 

To simplify the organization of  
the initial CTSS system, a design 
decision had been made to have 
each user at a terminal  associated 
with his or  her  own directory of  
files. Moreover,  the system itself 
was organized as a kind of  quasi- 

p roceeded  to cajole me into letting 
the system directory be an excep- 
tion so that more  than one person 
at a time could be logged into it. 
They  assured me that  they would 
be careful to not make mistakes. 

But of  course a mistake was 
made.  A software design decision in 
the s tandard  system text edi tor  was 
overlooked. I t  was assumed that the 
edi tor  would only be used by one 
user at a time working in one direc- 
tory so that a temporary  file could 
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user with its own directory that in- 
cluded a large number  of  support-  
ing applications and files, including 
the message-of-the day and the 
password file. So far, so good. Nor- 
mally a single-system p rog rammer  
could login to the system directory 
and make any necessary changes. 
But the number  of  system pro-  
g rammers  had grown to about a 
dozerL in number ,  and,  further ,  the 
systera by then was being opera ted  
almost continuously so that the 
need to do live maintenance of  the 
system files became essential. Not 
surprisingly, the system program-  
mers saw the one-user-to-a-direc- 
tory restriction as a big bottleneck 
for themselves. They  thereupon  

have the same name for all instan- 
tiations of  the editor.  But with two 
system programmers  edit ing at the 
same time in the system directory,  
the edi tor  t emporary  files became 
swapped and the disaster occurred.  

One can draw two lessons from 
this: First, design bugs are often 
subtle and occur by evolution with 
early assumptions being forgotten 
as new features or  uses are added  to 
systems. Second, even skilled pro- 
grammers  make mistakes. 

Multlcs 
Let me turn now to the develop- 
ment  of  Multics [12]. I will be br ief  
since the system has been docu- 
mented well and there have already 
been two retrospective papers  writ- 
ten [3, 4]. The  Muhics system was 
meant  to do t ime-sharing "right" 

and replace the previous ad hoc 
systems such as CTSS. It started as 
a cooperative effort  among Project 
MAC of  MIT, the Bell Telephone  
Laboratories,  and the Compute r  
Depar tment  of  General  Electric, 
later acquired by Honeywell. In  our  
expansiveness of  purpose  we took 
on a long list of  innovations. 

Among  the most impor tant  ones 
were the following: First, we intro- 
duced into the processor hardware  
the mechanisms for paging and 
segmentat ion along with a careful 
scheme for access control. Second, 
we in t roduced an idea for rings of  
protection a round  the supervisor  
software. Thi rd ,  we p lanned from 
the start that the system would be 
composed of  interchangeable  mul- 
tiple processors, memory  modules,  
and so forth. And  fourth,  we made 
the decision to implement  nearly all 
of  the system in the newly def ined 
compiler  language, PL/I. 

Let me share a few of  my obser- 
vations about  the Muhics experi-  
ence. The  novel hardware  we had 
commissioned meant  that the sys- 
tem had to be built f rom the 
g round  up so that we had an im- 
mense task on our  hands.  

The  decision to use a compiler  to 
implement  the system software was 
a good one, but  what we did not 
appreciate  was that new language 
PL/I presented us with two big dif- 
ficulties: First, the language had 
constructs in it which were intrinsi- 
cally complicated, and it required a 
learning per iod on the par t  of  sys- 
tem p rogrammers  to learn to avoid 
them. Second, no one knew how to 
do a good job  of  implement ing  the 
compiler.  Eventually we overcame 
these difficulties but  it took pre- 
cious time. 

Tha t  Muhics succeeded is re- 
markable,  for it was the result of  a 
cooperative effort  of  three highly 
independen t  organizations and had 
no administrat ive head. This  meant  
decisions were made by persuasion 
and consensus. Consequently,  it 
was difficult to reject weak ideas 
until considerable time and effort  
had been spent  on them. 

The  Muhics system did turn into 
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a commercial  product .  Some of  its 
major strengths were the virtual 
memory system, the file system, the 
attention to security, the ability to 
do online reconfiguration,  and the 
information backup system for the 
file system. 

And, as was also true with CTSS, 
many of  the alumni of  the Multics 
development  have gone on to play 
impor tant  roles in the comput ing 
field [ 11 ]. 

A few more observations can be 
made about the ambitious Multics 
experience. In  particular,  we were 
misled by our  earl ier  successes with 
previous systems such as CTSS, 
where we were able to build them 
"brick-by-brick," incrementally add-  
ing ideas to a large base of  already 
working software. 

We also were embarrassed by our  
inability to set and meet accurate 
schedules for complet ion of  the dif- 
ferent  phases of  the project. In ret- 
rospect, we should not have been, 
for we had never done anything 
like it before. However in many 
cases, our  estimations should have 
been called guesses. 

The  Unix system [15] was a reac- 
tion to Multics. Even the name was 
a joke.  Ken Thompson  was part  of  
the Bell Laboratories '  Multics ef- 
fort, and,  frustrated with the at- 
tempts to br ing a large system de- 
velopment under  control, decided 
to start over. His strategy was c l e a r - -  
Start small and build up the ideas 
one by one as he saw how to imple- 
ment  them well. As we all know, 
Unix has evolved and become im- 
mensely successful as the system of  
choice for workstations. Still there 
are aspects of  Multics that have 
never been replicated in Unix. 

As a commercial  product  of  
Honeywell and Bull, Multics devel- 
oped a loyal following. At the peak 
there were about 77 sites worldwide 
and even today many of  the sites 
tenaciously continue for want of  an 
alternative. 

Sources of Complexity 
The  general  problem with ambi- 
tious systems is complexity. Let me 
next try to abstract some of  the 

major  causes. The  most obvious 
complexity problems arise from 
scale. In particular,  the larger  the 
personnel  required,  the more levels 
of  management  there will be. We 
can see the problem even if we use 
simplistic calculations. Thus  if  we 
assume a fixed supervision ratio, 
for example six, the levels of  man- 
agement  will grow as the logari thm 
of  the personnel.  The  difficulty is 
that with more layers of  manage- 
ment,  the top-most layers become 
out of  touch with the relevant bot- 
tom issues and the likelihood of  
r andom serendipitous communica- 
tion decreases. 

Another  problem of  organiza- 
tions is that subordinates hate to 
repor t  bad news, sometimes for 
fear of  "being shot as the messen- 
ger" and at other  times because 
they may have a different  set of  
goals than the upper  management .  

And  finally, large projects en- 
courage specialization so that few 
team members  unders tand  all of  
the project. Misunderstandings and 
miscommunication begin, and soon 
a significant part  of  the project re- 
sources are spent  fighting internal 
confusion. And,  of  course, mistakes 
occur. 

My next category of  complexity 
arises because of  new design do- 
mains. The  most vivid examples 
come from the 'world of  physical 
systems, but  software too is subject 
to the same problems, albeit often 
in more subtle ways. 

Consider  the destruction of  the 
Tacoma Narrows Bridge, in Wash- 
ington State, on November  7, 1940. 
The  br idge had been proudly  
opened  about four  months earlier. 
Many of  you have probably seen 
the amateur  movie that was fortu- 
nately made of  the collapse. What  
happened  is that a strong hut  not 
unusual  crosswind blew that day. 
Soon the roadbed,  suspended by 
cables from the main span, began to 
vibrate like a reed, and the more it 
flexed, the better  cross section it 
presented to the wind. The  result 
was that the bridge tore itself apar t  
as the oscillations became large and 
violent. What  we had was a case of  a 

new design domain where the clas- 
sic br idge builder,  concerned with 
gravity-loaded structures, had en- 
tered into the realm of  aeronautics.  
The  result was a major mistake. 

Next, let us look at the complexi- 
ties that arise from human usage of  
computer  systems. In  using online 
systems that allow the sharing or  
exchanging of  i n f o r m a t i o n - - a n d  
here networked workstations 
clearly fall in this c lass - -one  is 
faced with a di lemma: I f  one places 
total trust in all other  users, one is 
vulnerable to the antisocial behav- 
ior of  any malicious use r - - cons ide r  
the case of  viruses. B u t  

if one tries 
to be t o t a l l y  
r e c l u s i v e  a n d  
i s o l a t e d ,  o n e  
is not only 
bored, but 
one ' s 
i n f o r m a t i o n  
universe 
will cease 
to g r o w  
and be 
e n h a n c e d  
b y  i n t e r -  
action with 
others. 

The  result is that 
most of  us operate  in a complicated 
t rade-off  zone with various ar- 
rangements  of  trust and security 
mechanisms. Even such simple 
ideas as passwords are often a prob- 
lem. They are a nuisance to re- 
member ,  they can easily be com- 
promised inadvertently,  and they 
cannot be selectively revoked if  
shared.  Privacy and security issues 
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are part icularly difficult to deal 
with since responsibilities are often 
split among users, managers,  and 

vendors.  Wo r se 

yet, there 
is no way 
to simply 

"look" at a 
system and 
determine 
what the 
privacy 

and security 
implications 

are. It is 
no wonder 
mistakes 

occur all 
the time 

in this area. 

One of  the consequences of  
using computer  systems is that in- 
creasingly informat ion is being kept  
on-line in central storage devices. 
Compute r  storage devices have 
become remarkably  re l i ab le - -  
except when they b r e a k - - a n d  that 
is the rub. Even the most experi-  
enced computer  user can find him- 
or herself  lulled into a false sense of  
security by the almost perfect  oper-  
ation of  today's devices. The  prob- 
lem is compounded  by the att i tude 
of  vendors,  not unlike the initial 
at t i tude of  the automobile industry 
toward safety, where inevitable disk 
failure is t reated as a negative issue 
that dampens  sales. 

What  is needed is constant vigi- 
lance against a long list of  "what 
ifs": hardware  failure, human slips, 
vandalism, theft, fire, earthquakes,  
long-term media failure, and even 

the loss of  institutional memories  
concerning recovery procedures.  
And as long as some individuals 
have to "learn the hard  way," mis- 
takes will continue to be made. 

A fur ther  complication in dis- 
cussing risk or  reliability is that 
there  is not  a good language with 
which to carry on a dialog. Statistics 
are as often misapplied as they are 
misunderstood.  We also get absurd 
absolutes such as "the Strategic 
Defense Initiative will produce  a 
perfect  unsaturatable shield against 
nuclear attack" [14] or  "it is impos- 
sible for the reactor to overheat." 
The  problem is that we always have 
had risks in our  lives, we never have 
been very good at discussing them, 
and with computers  we now have a 
lot of  new sources. 

Another  source of  complexity 
arises with rapid  change, change 
which is often driven by technology 
improvements .  A result is that 
changes in procedures  or  usage 
occur and new vulnerabilities can 
arise. For  example,  in the area of  
te lephone networks, the economies 
and efficiencies of  fiber optic cables 
compared  to copper  wire are rap- 
idly causing major upgrades  and 
replacements  in the national tele- 
phone  plant. Because one fiber 
cable can carry at a reasonable cost 
the equivalent traffic of  thousands 
of  copper  wires, fiber is quickly 
replacing copper.  As a result, a 
t ransformat ion is likely to occur 
where network links become spar- 
ser over a given area and multiply 
interconnected nodes become less 
connected. 

The  difficulty is that there  is re- 
duced redundancy  and a much 
higher  vulnerability to isolated acci- 
dents. In the Chicago area not  long 
ago there was a fire at a fiber optics 
switching center that caused a loss 
of  service to a huge number  of  cus- 
tomers for several weeks. More re- 
cently, in New York City there was a 
shutdown of  the financial ex- 
changes for several hours because 
of  a single mishap with a backhoe in 
New Jersey. Obviously in both in- 
stances, efficiency had gotten ahead 
of  robustness. 

The  last source of  complexity 
that I will single out  arises from the 
frailty of  human  users when forced 
to deal  with the multiplicity of  tech- 
nologies in modern  life. In  a little 
more than a century,  there  has 
been an awesome progression of  
technological changes from tele- 
phones and electricity, th rough  
automobiles,  movies and r a d i o - - I  
will not even try to complete the list 
since we all know it well. The  over- 
all consequence has been to pro- 
duce vast changes in our  life-styles, 
and we see these changes even hap- 
pening today. Consider  the changes 
in the television edit ing styles that 
have occurred over a few decades, 
the impact  of  viewgraph overhead 
projectors on college classrooms, 
and the way we now do our  banking 
with automatic teller machines. 
And  the progression of  life-style 
changes continues at a seemingly 
more rapid  pace with word process- 
ing, answering machines, facsimile 
machines, and electronic mail. 

One consequence of  the many 
life-style changes is that some indi- 
viduals feel stressed and overstimu- 
lated by the p le thora  of  inputs. The  
natural  defense is to increasingly 
depend  on others  to act as informa- 
tion filters. But the combination of  
stressful life-styles and inst/lation 
from original data will inevitably 
lead to more confusion and mis- 
takes. 

Conclusions 
Most of  this talk has been directed 
toward trying to persuade  you that 
failures in complex, ambitious sys- 
tems are inevitable. However,  I 
would be remiss if I did not address 
ways to resolve the problem. Un- 
fortunately,  the list I can offer  is 
ra ther  short  but  worthy of  br ief  
review. 

First, it is impor tan t  to emphasize 
the value of  simplicity and ele- 
gance, for complexity has a way of  
compounding  difficulties and as we 
have seen, creat ing mistakes. My 
definit ion of  elegance is the 
achievement of  a given functional- 
ity with a min imum of  mechanism 
and a maximum of  clarity. 
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Second, the value of  me taphors  
should no t  be underes t imated .  
Metaphors  have the vir tue of  an  
expected behavior  that  is u n d e r -  
stood by all. Unnecessary  c o m m u -  
nicat ion and  mi sunde r s t and ings  
are reduced.  Lea rn ing  an d  educa- 
t ion are quicker.  In  effect, meta- 
phors  are a way of  in te rna l iz ing  an d  
abstract ing concepts  allowing one's  
th ink ing  to be on  a h igher  p lane  
and  low-level mistakes to be 
avoided. 

Th i rd ,  use of  cons t ra ined  lan- 
guages for design or  synthesis is a 
powerful  methodology.  By not  al- 
lowing a p r o g r a m m e r  or des igner  
to express i r re levant  ideas, the 
d o m a i n  of  possible errors  becomes 
far more  limited. 

Four th ,  one  mus t  try to antici- 
pate both errors  of  h u m a n  usage 
and  of  ha rdware  fai lure a n d  prop-  
erly develop the necessary cont in-  
gency paths. This  process of  play- 
ing  "what if" is no t  as easy as it may 
sound,  since the need  to attach like- 
l ihoods of occurrence  to events  and  
to address  issues of  the i ndepen -  
dence  of  failures is implicit. 

Fifth, it should be assumed in the 
design o f  a system, that it will have 
to be repai red  or  modif ied.  T h e  
overall effect will be a much  more  
robus t  system, where  there  is a high 
degree  of  funct ional  modular i ty  
and  s tructure,  and  repairs  can be 
made  easily. 

Sixth, and  last, on  a large project, 
one  of  the best investments  that can 
be made  is the cross edt~cation of  
the team so that near ly  everyone 
knows more  than  he or  she needs to 
know. Clearly, with educat ional  
r edundancy ,  the team is more  resil- 
ient  to unexpec ted  tragedies or  
depar tures .  But  in addi t ion,  the 
increased awareness of  team mem-  
bers can help catch global or  sys- 
temic mistakes early. It  really is a 
case of  "more  heads are bet ter  than  
o n e . "  

Finally, I have touched on  m a n y  
d i f fe ren t  themes in this talk bu t  I 
will single ou t  three:  First, the evo- 
lut ion of  technology suppor ts  a rich 
fu tu re  for ambit ious visions and  
d reams  that  will inevitably involve 

complex  systems. Second, one  mus t  
always try to learn f rom past mis- 
takes, bu t  at the same time be alert  
to the possibility that  new circum- 
stances requi re  new solutions. A n d  
third,  one  mus t  r e m e m b e r  that 
ambi t ious  systems d e m a n d  a defen-  
sive phi losophy of  des ign and  im- 
p lementa t ion .  In  o ther  words, 
"Don ' t  wonde r  zf some mishap  may 
happen ,  bu t  ra ther  ask what one  will 
do about  it when  it does occur ."[ : l  
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