Science Advances NAAAS

Supplementary Materials for

Chemical recycling of mixed textile waste

Erha Andini *et al.*

Corresponding author: Sunitha Sadula, sunithak@udel.edu; Dionisios G. Vlachos, vlachos@udel.edu

Sci. Adv. **10**, eado6827 (2024) DOI: 10.1126/sciadv.ado6827

This PDF file includes:

Figs. S1 to S18 Tables S1 to S4 References

Figure S1. Characterization of 100% polyester and 100% cotton textiles. (A) TGA, (B) FTIR, (C) DSC, (D) XRD, and SEM micrographs of (E) 100% polyester, (F) 100% cotton, and (G) 50/50 PolyCotton T-shirt.

[Figure S1](#page-1-0)A displays TGA profiles for various samples. The polyester textile exhibits a single peak at 430 °C due to PET decomposition. The cotton textile shows three peaks: water loss below 100 °C (**[Table S1](#page-5-0)**), durable press degradation at 280 °C, and cotton decomposition at 360 °C (**[Figure](#page-3-0) [S2](#page-3-0)**). Cotton's water absorption is attributed to hydroxyl groups, serving as moisture absorbers (*67*), and durable press is typically utilized for textiles with a high content of cellulosic fibers to resist shrinkage and enhance wrinkle recovery (*68*). The 50/50 PolyCotton T-shirt exhibits peaks for both polyester and cotton without durable press. Prolonged heating results in carbonized residues for all samples (*69*).

FTIR (**[Figure S1](#page-1-0)**B) examined the chemical structure of all samples. Polyester's peaks (1700, 1200, 1100, 700 cm−1) are in light pink; cotton's peaks (3300 – 3600, 1000, 1100 cm−1) in light blue. The 50/50 PolyCotton T-shirt displays key peaks for both polyester and cotton.

In **[Figure S1](#page-1-0)**C, the polyester DSC curve displays a melting peak at 255 °C. Cotton's curve shows a peak at 258 °C and a sharp event at 154 °C related to durable press decomposition. The 50/50 PolyCotton T-shirt exhibits peaks for polyester and cotton, along with a broad endothermic peak $(80 - 160 \degree C)$ indicating water evaporation. Durable press treatments alter moisture-wicking properties, seen in the absence of a water evaporation peak in 100% cotton (*68*).

XRD examined textile crystallinity (**[Figure S1](#page-1-0)**D), color-coded for polyester and cotton peaks. Polyester shows peaks at $2\theta = 17.5^{\circ}$, 22.5° , and 26° ; cotton has a strong peak at $2\theta = 23^{\circ}$ and a weaker peak at $2\theta = 15^{\circ}$. The 50/50 PolyCotton T-shirt displays all these peaks. Reduced peak intensity in the T-shirt suggests decreased crystallinity in both polyester and cotton, likely due to processing (*e.g.*, temperature or mechanical deformation during T-shirt making) disrupting crystalline regions (*28*).

SEM micrographs in **[Figure S1](#page-1-0)**E-G confirm the structures of 100% polyester and 100% cotton textiles (woven) and the 50/50 PolyCotton T-shirt (knit) (**[Figure S3](#page-4-0)**). Cotton fibers show a ribbonlike twist, while polyester fibers resemble multi-fiber strands. The 50/50 PolyCotton T-shirt displays fibers with characteristics of both polyester and cotton.

Figure S2. TGA and DTG of pure textiles. (A) white 100% polyester textile, (B) white 100% cotton textile, and (C) white 50/50 PolyCotton T-shirt at 35 °C to 650 °C for 10 °C/min rate under a N² atmosphere.

Figure S3. SEM micrographs of pure textiles. (A) 100% polyester, (B) 100% cotton, and (C) 50/50 PolyCotton T-shirt.

Table S1. Moisture content of 100% polyester and 100% cotton textiles. Both textiles were airdried in the oven at 70 °C for 1.5 h.

Textile	Mass		
	Initial (g)	Final (g)	Mass Loss $(\%)$
100% Polyester	0.492	0.487	
100% Cotton	0.477	0.452	

Figure S4. Effect of glycolysis on polyester and cotton. TGA and FTIR of 100% polyester (top) and 100% cotton (bottom) before and after MW-assisted depolymerization using ZnO.

Figure S5. SEM micrographs of 50/50 PolyCotton remaining residues after MW-assisted glycolysis. A) 150°C, B) 180°C, and C) 210°C at varying reaction time.

Figure S6. Chemical structure examples of disperse dyes primary colors. Primary colors include red, blue, yellow, and green.

A) 100% Nylon (N)

10% Spandex

Figure S7. Polyester glycolysis in the presence of cotton, nylon, and spandex. Reaction conditions: 0.5 g textile, 5 mg ZnO, 5 mL EG, 210 °C, 45 min.

Figure S8. Effect of glycolysis on nylon and spandex. (A) FTIR and (C) GPC spectra of 100% nylon textile before and after glycolysis. (B) HPLC and (D) LCMS spectra of 100% nylon product solution after glycolysis. TGA and DSC of (E) 100% nylon and (F) 90% nylon/10% spandex textiles and solid residues.

Figure S9. Catalyst effect on nylon and spandex. MW-assisted depolymerization of A) 100% nylon and B) 90% nylon/10% spandex textiles using ZnO. Reaction conditions: 0.5 g textile, 5 mg ZnO, 5 mL EG, 210 °C, 45 min.

Figure S10. FTIR of 90% nylon/10% spandex remaining solids upon glycolysis. Reaction conditions: 0.5 g textile, 5 mg ZnO, 5 mL EG, 210 °C, 45 min.

Figure S11. Proposed process for recycling of real mixed textile waste. Reaction conditions: 0.5 g textile, 5 mg ZnO, 5 mL EG, 210 °C, 15 min.

Figure S12. **Characterization of recovered BHET after 1st crystallization.** A) ¹H-NMR spectra, B)¹³C-NMR spectra, C) TGA, and D) DSC of BHET obtained from the microwaveassisted glycolysis of mixed textile waste using ZnO catalyst.

Figure S13. BHET purification. Color comparison of BHET crystals obtained from textile waste (before and after subsequent purification) vs. Sigma-Aldrich.

Figure S14. Detection of spandex monomers in product solution by LCMS. EG was removed prior to analysis and the remaining residue was dissolved in MeOH.

Figure S15. Characterization of recovered cotton. A) TGA, B) FTIR, C) DSC and D) XRD of isolated cotton obtained from the microwave-assisted glycolysis of mixed textile waste using ZnO catalyst.

Figure S16. Characterization of recovered nylon. A) TGA, B) FTIR, C) DSC, and D) XRD of isolated nylon obtained from the microwave-assisted glycolysis of mixed textile waste using ZnO catalyst.

Figure S17. Spandex monomers recovery by removing EG through vacuum distillation. The remaining residue was collected with MeOH. Insoluble particles were removed prior to spandex monomers recovery.

Process development and techno-economic analysis.

Figure S18. Process flowsheet of mixed textile waste recycling. Process flowsheet was developed in ASPEN Plus.

Table S3*.* Flowrates for process streams.

Table S4. Overall cost distribution for two cases.

REFERENCES AND NOTES

- 1. Textile Exchange, Preferred Fiber And Materials Market Report 2022; [https://textileexchange.org/knowledge-center/reports/materials-market-report-2022/.](https://textileexchange.org/knowledge-center/reports/materials-market-report-2022/)
- 2. J. P. Juanga-Labayen, I. V. Labayen, Q. Yuan, A review on textile recycling practices and challenges. *Textiles* **2**, 174–188 (2022).
- 3. S. Wang, S. Salmon, Progress toward circularity of polyester and cotton textiles. *Sustain. Chem.* **3**, 376– 403 (2022).
- 4. S. Bianchi, F. Bartoli, C. Bruni, C. Fernandez-Avila, L. Rodriguez-Turienzo, J. Mellado-Carretero, D. Spinelli, M.-B. Coltelli, Opportunities and limitations in recycling fossil polymers from textiles. *Macromol* **3**, 120–148 (2023).
- 5. K. Niinimäki, G. Peters, H. Dahlbo, P. Perry, T. Rissanen, A. Gwilt, The environmental price of fast fashion. *Nat. Rev. Earth Environ.* **1**, 189–200 (2020).
- 6. Ellen MacArthur Foundation, A New Textiles Economy: Redesigning fashion's future; https://ellenmacarthurfoundation.org/a-new-textiles-economy.
- 7. McKinsey & Company, Scaling textile recycling in Europe—Turning waste into value; https://mckinsey.com/industries/retail/our-insights/scaling-textile-recycling-in-europe-turning-wasteinto-value.
- 8. Z. Chen, H. Sun, W. Kong, L. Chen, W. Zuo, Closed-loop utilization of polyester in the textile industry. *Green Chem.* **25**, 4429–4437 (2023).
- 9. M. Arifuzzaman, B. G. Sumpter, Z. Demchuk, C. Do, M. A. Arnould, M. A. Rahman, P. Cao, I. Popovs, R. J. Davis, S. Dai, T. Saito, Selective deconstruction of mixed plastics by a tailored organocatalyst. *Mater. Horiz.* **10**, 3360–3368 (2023).
- 10. H. Cao, K. Cobb, M. Yatvitskiy, M. Wolfe, H. Shen, Textile and product development from end-of-use cotton apparel: A study to reclaim value from waste. *Sustain.* **14**, 8553 (2022).
- 11. R. B. Baloyi, O. J. Gbadeyan, B. Sithole, V. Chunilall, Recent advances in recycling technologies for waste textile fabrics: A review. *Text. Res. J.* **94**, 508–529 (2023).
- 12. B. Mu, Y. Yang, Complete separation of colorants from polymeric materials for cost-effective recycling of waste textiles. *Chem. Eng. J.* **427**, 131570 (2022).
- 13. B. D. Vogt, K. K. Stokes, S. K. Kumar, Why is recycling of postconsumer plastics so challenging? *ACS Appl. Polym. Mater.* **3**, 4325–4346 (2021).
- 14. L. Gausas, S. K. Kristensen, H. Sun, A. Ahrens, B. S. Donslund, A. T. Lindhardt, T. Skrydstrup, Catalytic hydrogenation of polyurethanes to base chemicals: From model systems to commercial and end-of-life polyurethane materials. *JACS Au.* **1**, 517–524 (2021).
- 15. S. Choi, H. M. Choi, Eco-friendly, expeditious depolymerization of PET in the blend fabrics by using a bio-based deep eutectic solvent under microwave irradiation for composition identification. *Fibers Polym.* **20**, 752–759 (2019).
- 16. K. Phan, S. Ügdüler, L. Harinck, R. Denolf, M. Roosen, G. O'Rourke, D. De Vos, V. Van Speybroeck, K. De Clerck, S. De Meester, Analysing the potential of the selective dissolution of elastane from mixed fiber textile waste. *Resour. Conserv. Recycl.* **191**, 106903 (2023).
- 17. Y. Yang, S. Sharma, C. Di Bernardo, E. Rossi, R. Lima, F. S. Kamounah, M. Poderyte, K. Enemark-Rasmussen, G. Ciancaleoni, J.-W. Lee, Catalytic fabric recycling: Glycolysis of blended pet with carbon dioxide and ammonia. *ACS Sustain. Chem. Eng.* **11**, 11294–11304 (2023).
- 18. J. Egan, S. Wang, J. Shen, O. Baars, G. Moxley, S. Salmon, Enzymatic textile fiber separation for sustainable waste processing. *Resour. Environ. Sustain.* **13**, 100118 (2023).
- 19. E. Selvam, Y. Luo, M. Ierapetritou, R. F. Lobo, D. G. Vlachos, Microwave-assisted depolymerization of PET over heterogeneous catalysts. *Catal. Today* **418**, 114124 (2023).
- 20. S. Najmi, B. C. Vance, E. Selvam, D. Huang, D. G. Vlachos, Controlling PET oligomers vs monomers via microwave-induced heating and swelling. *Chem. Eng. J.* **471**, 144712 (2023).
- 21. G. Park, L. Bartolome, K. G. Lee, S. J. Lee, D. H. Kim, T. J. Park, One-step sonochemical synthesis of a graphene oxide-manganese oxide nanocomposite for catalytic glycolysis of poly(ethylene terephthalate). *Nanoscale* **4**, 3879–3885 (2012).
- 22. M. Imran, D. H. Kim, W. A. Al-Masry, A. Mahmood, A. Hassan, S. Haider, S. M. Ramay, Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly(ethylene terephthalate) via glycolysis. *Polym. Degrad. Stab.* **98**, 904–915 (2013).
- 23. A. Palme, A. Peterson, H. de la Motte, H. Theliander, H. Brelid, Development of an efficient route for combined recycling of PET and cotton from mixed fabrics. *Text. Cloth. Sustain.* **3**, 9 (2017).
- 24. M. A. Glaus, L. R. Van Loon, Degradation of cellulose under alkaline conditions: New insights from a 12 years degradation study. *Environ. Sci. Technol.* **42**, 2906–2911 (2008).
- 25. A. Peterson, J. Wallinder, J. Bengtsson, A. Idström, M. Bialik, K. Jedvert, H. de la Motte, Chemical recycling of a textile blend from polyester and viscose, part I: Process description, characterization, and utilization of the recycled cellulose. *Sustain.* **14**, 7272 (2022).
- 26. C. Vigneswaran, M. Ananthasubramanian, P. Kandhavadivu, Eds., *Bioprocessing of Textiles* (WPI Publishing, 2014).
- 27. A. Stoski, M. F. Viante, C. S. Nunes, E. C. Muniz, M. L. Felsner, C. A. P. Almeida, Oligomer production through glycolysis of poly(ethylene terephthalate): Effects of temperature and water content on reaction extent. *Polym. Int.* **65**, 1024–1030 (2016).
- 28. A. R. Horrocks, S. C. Anand, Eds., *Handbook of Technical Textiles, Volume 1: Principles, Processes and Types of Dyes* (Woodhead Publishing Limited, 2016).
- 29. M. Clark, Ed., *Handbook of Textile and Industrial Dyeing, Volume 1: Technical Textile Processes* (Woodhead Publishing Limited, 2011).
- 30. C. S. Nunes, P. R. Souza, A. R. Freitas, M. J. V. da Silva, F. A. Rosa, E. C. Muniz, Poisoning effects of water and dyes on the [Bmim][BF4] catalysis of poly(ethylene terephthalate) (PET) depolymerization under supercritical ethanol. *Catalysts* **7**, 1–16 (2017).
- 31. B. Mu, X. Yu, Y. Shao, L. McBride, H. Hidalgo, Y. Yang, Complete recycling of polymers and dyes from polyester/cotton blended textiles via cost-effective and destruction-minimized dissolution, swelling, precipitation, and separation. *Resour. Conserv. Recycl.* **199**, 107275 (2023).
- 32. A. R. Abouelela, J. P. Hallett, A. E. J. Firth, O. D. Levers, Dye recycling methods, WIPO Patent Application WO/2022/175559 (2022).
- 33. K. B. Nam, J. H. Yeo, S. C. Hong, Study of the phosphorus deactivation effect and resistance of vanadium-based catalysts. *Ind. Eng. Chem. Res.* **58**, 18930–18941 (2019).
- 34. R. F. Ilmasani, D. Yao, P. H. Ho, D. Bernin, D. Creaser, L. Olsson, Deactivation of phosphoruspoisoned Pd/SSZ-13 for the passive adsorption of NOx. *J. Environ. Chem. Eng.* **10**, 107608 (2022).
- 35. K. Salmeia, S. Gaan, G. Malucelli, Recent advances for flame retardancy of textiles based on phosphorus chemistry. *Polymers* **8**, 319 (2016).
- 36. Acumen Research and Consulting, Spandex Fiber Market Size—Global Industry, Share, Analysis, Trends and Forecast 2023–2032; https://acumenresearchandconsulting.com.
- 37. Grand View Research, Nylon Market Size, Share & Trends Analysis Report; https://grandviewresearch.com/industry-analysis/nylon-6-6-market.
- 38. M. B. Johansen, B. S. Donslund, M. L. Henriksen, S. K. Kristensen, T. Skrydstrup, Selective chemical disassembly of elastane fibres and polyurethane coatings in textiles. *Green Chem.* **25**, 10622–10629 (2023).
- 39. F. Lv, D. Yao, Y. Wang, C. Wang, P. Zhu, Y. Hong, Recycling of waste nylon 6/spandex blended fabrics by melt processing. *Compos. Part B Eng.* **77**, 232–237 (2015).
- 40. W. H. Xu, L. Chen, S. Zhang, R. C. Du, X. Liu, S. Xu, Y. Z. Wang, New insights into urethane alcoholysis enable chemical full recycling of blended fabric waste. *Green Chem.* **25**, 245–255 (2022).
- 41. Y. Yin, D. Yao, C. Wang, Y. Wang, Removal of spandex from nylon/spandex blended fabrics by selective polymer degradation. *Text. Res. J.* **84**, 16–27 (2014).
- 42. Y. Peng, J. Yang, C. Deng, J. Deng, L. Shen, Y. Fu, Acetolysis of waste polyethylene terephthalate for upcycling and life-cycle assessment study. *Nat. Commun.* **14**, 3249 (2023).
- 43. American Society for Testing and Materials, Standard Test Methods for Quantitative Analysis of Textiles; https://astm.org/d0629-15.html.
- 44. S. Anwar, D. Pinkal, W. Zajaczkowski, P. Von Tiedemann, H. S. Dehsari, M. Kumar, T. Lenz, U. Kemmer-Jonas, W. Pisula, M. Wagner, R. Graf, H. Frey, K. Asadi, Solution-processed transparent ferroelectric nylon thin films. *Sci. Adv.* **5**, eaav3489 (2019).
- 45. C. C. Westover, T. E. Long, Envisioning a BHET economy: Adding value to PET waste. *Sustain. Chem.* **4**, 363–393 (2023).
- 46. IndexBox, World Polyethylene in Primary Forms Market Analysis, Forecast, Size, Trends And Insights; https://indexbox.io/search/polyethylene-in-primary-forms-market/
- 47. Textile Beacon, Polyester yarn export price see a sharp jump in two years; https://textilebeacon.com/news/polyester-yarn-export-price-jump/
- 48. Textile Beacon, Yarn export from India halves in May 2022 as prices surged; https://textilebeacon.com/news/yarn-export-halves-prices-surged/
- 49. Fibre2Fashion, Polyester Yarn and Fiber Market: Trends, Prices & Forecast; https://fibre2fashion.com/market-intelligence/texpro-textile-and-apparel/raw-material-prices/polyestervalue-chain
- 50. S. J. Kadolph, S. B. Marcketti, *Textiles* (Pearson Education, 2016).
- 51. Thunder Said Energy, Polyurethanes: What upside in energy transition?; https://thundersaidenergy.com/2023/08/10/polyurethanes-what-upside-in-energy-transition/
- 52. Business Analytiq, Epoxy Resin price index; https://businessanalytiq.com/procurementanalytics/index/epoxy-resin-price-index/.
- 53. D. S. Cousins, Y. Suzuki, R. E. Murray, J. R. Samaniuk, A. P. Stebner, Recycling glass fiber thermoplastic composites from wind turbine blades. *J. Clean. Prod.* **209**, 1252–1263 (2019).
- 54. All About 3D Printing & Additive Manufacturing, 3D Printer Material Cost of 2023; https://all3dp.com/2/3d-printer-material-cost-the-real-cost-of-3d-printing-materials/
- 55. Graphene Flagship, Composites, Bulk Applications and Coatings; https://grapheneflagship.eu/industrialisation/roadmap/composites-bulk-applications-and-coatings/
- 56. A. Palme, A. Idström, L. Nordstierna, H. Brelid, Chemical and ultrastructural changes in cotton cellulose induced by laundering and textile use. *Cellul.* **21**, 4681–4691 (2014).
- 57. B. Wanassi, B. Azzouz, M. Ben Hassen, Value-added waste cotton yarn: Optimization of recycling process and spinning of reclaimed fibers. *Ind. Crops Prod.* **87**, 27–32 (2016).
- 58. K. Subramanian, M. K. Sarkar, H. Wang, Z. H. Qin, S. S. Chopra, M. Jin, V. Kumar, C. Chen, C. W. Tsang, C. S. K. Lin, An overview of cotton and polyester, and their blended waste textile valorisation to value-added products: A circular economy approach–research trends, opportunities and challenges. *Crit. Rev. Environ. Sci. Technol.* **52**, 3921–3942 (2022).
- 59. E. Andini, J. Bragger, S. Sadula, D. G. Vlachos, Production of neo acids from biomass-derived monomers. *Green Chem.* **25**, 3493–3502 (2023).
- 60. Textile Technology, Stable world natural fiber production in 2022; https://textiletechnology.net/fibers/news/dnfi-stable-world-natural-fiber-production-in-2022-32691
- 61. C. Scarlata, G. Mosey, Feasibility Study of Economics and Performance of Biopower at the Chanute Air Force Base in Rantoul, Illinois (National Renewable Energy Laboratory, 2013).
- 62. Fibre2Fashion, Nylon value chain prices likely to remain bearish, sentiments weak; https://fibre2fashion.com/news/nylon-news/nylon-value-chain-prices-likely-to-remain-bearishsentiments-weak-282358-newsdetails.htm
- 63. Invista, A closer look at our products and brands; https://invista.com/products-brands
- 64. Xometry, 3D Printer Filament: Types, Materials, Uses, and Services; https://xometry.com/resources/3dprinting/3d-printer-filament/
- 65. Y. Lyu, J. Wu, H. Zhang, C. M. Ó. Brádaigh, D. Yang, Effects of thermal process conditions on crystallinity and mechanical properties in material extrusion additive manufacturing of discontinuous carbon fibre reinforced polyphenylene sulphide composites. *J. Compos. Mater.* **57**, 3775–3787 (2023).
- 66. Y. Luo, E. Selvam, D. G. Vlachos, M. Ierapetritou, Economic and environmental benefits of modular microwave-assisted polyethylene terephthalate depolymerization. *ACS Sustain. Chem. Eng.* **11**, 4209– 4218 (2023).
- 67. M. Matusiak, D. Kamińska, Liquid moisture transport in cotton woven fabrics with different weft yarns. *Materials* **15**, 6489 (2022).
- 68. V. A. Dehabadi, H. J. Buschmann, J. S. Gutmann, Durable press finishing of cotton fabrics: An overview. *Text. Res. J.* **83**, 1974–1995 (2013).
- 69. S. L. Madorsky, S. Straus, Thermal degradation of polymers at high temperatures. *J. Res. Natl. Bur. Stand. Sect. A Phys. Chem.* **63A**, 261–268 (1959).