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Abstract
Mechanical metamaterials with engineered failure properties typically rely on periodic unit cell geometries or bespoke microstructures to 
achieve their unique properties. We demonstrate that intelligent use of disorder in metamaterials leads to distributed damage during 
failure, resulting in enhanced fracture toughness with minimal losses of strength. Toughness depends on the level of disorder, not a 
specific geometry, and the confined lattices studied exhibit a maximum toughness enhancement at an optimal level of disorder. A 
mechanics model that relates disorder to toughness without knowledge of the crack path is presented. The model is verified through 
finite element simulations and experiments utilizing photoelasticity to visualize damage during failure. At the optimal level of 
disorder, the toughness is more than 2.6× of an ordered lattice of equivalent density.
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Significance Statement

Architected mechanical metamaterials use fine-scale geometry to achieve exceptional properties including high stiffness- and 
strength-to-weight ratios. However, their failure via fracture is not well-understood despite toughness being a critical property for 
structural applications. Existing work on the fracture of mechanical metamaterials has largely focused on periodic structures, limit-
ing the design space. Here, we demonstrate that disordered architectures provide additional design opportunities and can significant-
ly enhance toughness by generating distributed damage during fracture. These enhancements are achieved with minimal losses in 
strength and stiffness. We present a mechanics model that characterizes the toughness enhancements, verified via finite element 
analysis and fracture experiments utilizing photoelasticity to visualize the damage during fracture.

Competing Interest: The authors declare no competing interests. 
Received: August 8, 2024. Accepted: January 15, 2025 
© The Author(s) 2025. Published by Oxford University Press on behalf of National Academy of Sciences. This is an Open Access article dis-
tributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-
stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Architected mechanical metamaterials leverage geometry to 
achieve outstanding mechanical properties, including superior 
stiffness- and strength-to-weight ratios (1–8). Only recently has 
the fracture behavior of architected materials been investigated 
(9–22), despite the importance of failure via crack propagation in 
many materials. Architecture provides an opportunity to improve 
mechanical performance by controlling and enhancing fracture 
toughness, but this has not been fully realized, as previous inves-
tigations have primarily focused on materials with simple, period-
ic microstructures (23–25).

Seminal works on the fracture of lattice materials (23–26) 
showed that the toughness, Gc, is primarily a function of the con-
nectivity, which controls if the lattice is stretch- or bending- 
dominated, the relative density, ρ, the unit cell size, L, and the 
orientation of the ligaments. For a fixed relative density, stretch- 
dominated lattices with large unit cells achieve the highest 

toughness, with the only other meaningful variable being the 
orientation of the ligaments, the effects of which are not well 
understood.

Although often inspired by nature (27–30), the structural com-
plexity of architected materials is comparatively limited, predom-
inantly utilizing regular, periodic patterns (9–13). This simplicity is 
contrasted by the disordered and nonperiodic structures found in 
natural materials with high fracture toughness, such as bone (31), 
nacre (32), and the mollusk byssus thread (33). These materials all 
exhibit a ubiquitous low level of disorder throughout their struc-
tures, suggesting there may be an optimal level of disorder. 
These natural structures are also often confined, or a component 
in a larger system (27, 31), unlike many of the freestanding struc-
tures that have been explored to date (10, 34, 35). When more 
complicated or disordered geometries are investigated (34, 36), 
typically a small number of representative geometries are consid-
ered, leaving it unclear if the measured properties are a product of 
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the disorder and thus generalizable or are unique to the 
specific geometry. However, in these limited cases, it has been 
shown that disordered geometries can result in more distributed 
damage during fracture than a homogeneous or ordered structure 
(34, 36–38), suggesting that higher toughness may be achieved 
through disorder.

Disordered structures have not been systematically studied 
primarily because traditional fracture mechanics analyses of ar-
chitected materials assume a self-similar crack front during 
propagation (23–25), limiting the analysis to periodic structures 
typically at small length scales. However, these same analyses 
show that toughness increases with increasing the unit cell size, 
with Gc ∝ L (25). Previous works (20, 21, 39) on fracture of ordered 
architected materials posited that the largest structures that are 
expected to significantly influence the toughness can have a 
length scale comparable to the process zone, λ0 (40), the region 
of inelastic damage resulting from the singular crack-tip stresses. 
In an elastic-brittle lattice, the stresses are not truly singular, as 
the crack-tip radius depends on the unit cell size and thus cannot 
be infinitely sharp, nor is there a traditional process zone arising 
from inelastic effects. However, there remains a region of high 
stress near the crack tip and a length scale over which these 
stresses decay that is akin to an effective process zone size (39).

While structures comparable to this length scale have already 
demonstrated significant enhancements in toughness (20, 21, 39), 
they remain periodic and assume an a priori crack path and a 
self-similar crack front. Identifying the crack path in disordered 
structures is challenging with recent works using data-driven ap-
proaches, such as graph neural networks (41), to predict the crack 
path and toughness. These approaches, however, do not provide 
insight into the mechanisms through which disorder affects 
toughness.

We investigate the fracture of 2D plane strain triangular latti-
ces with unit cells comparable to the effective process zone in 
size and quantify how geometric disorder relates to the distribu-
tion of damage during crack propagation and the toughness. We 
introduce a framework utilizing an effective crack length that 
demonstrates that toughness may be estimated by identifying 
the number of ligament failures per crack advance and the 
strengths of the lattice unit cells. Results are verified through a 
combination of finite element simulations and fracture experi-
ments, which reveal that the introduction of disorder changes 
the damage from a straight, continuous crack path to 

discontinuous distributed damage, resulting in higher toughness. 
For a confined lattice, we identify an optimal level of disorder 
where toughness is maximized. These enhancements in tough-
ness are achieved with minimal loss of strength and negligible 
change in stiffness.

We consider a lattice of finite height (e.g. a lattice at an inter-
face between two solids), as shown in Fig. 1B–D, with the lattice 
embedded in a double cantilever beam geometry. Geometric dis-
order is incorporated while maintaining consistent connectivity 
by perturbing the node locations in 2D by distances Δx and Δy 
(Fig. 1A). Each perturbation is selected from a normal distribution. 
For a unit cell with length L, the disorder magnitude is defined as 
δ =

������������
Δx2 + Δy2


/L. The network’s average disorder, δ̅, is calculated 

as the mean of all the perturbations, with larger δ̅ values corre-
sponding to greater disorder across the network, as shown in 
Fig. 1C and D. The impacts of different definitions of disorder 
are discussed below. Lattices with perturbations that result in 
overlapping nodes are not considered, as they would change the 
connectivity of the lattice, which is outside the scope of this ana-
lysis. This places a geometric limit on the perturbation of one node 
to be less than δ = 0.433. Additional practical constraints arising 
from the finite thickness of the beams and neighboring nodes limit 
the average level of disorder in a lattice to less than δ̅ ≈ 0.375.

Effect of disorder on local lattice failure
The impact of disorder on the local strength of the lattice is as-
sessed via a unit cell analysis consisting of a single perturbed 
node and its connecting ligaments, as shown in Fig. 1A. As the lat-
tice is stretch-dominated, only the axial stresses in the ligaments 
are significant (42). Bending stresses and stress concentrations at 
the nodes are neglected. The axial stress in each ligament is 
σai = Fi/A, where i denotes the ligament, Fi is the force in the liga-
ment, and A = tb is the ligament’s cross-sectional area, with 
t being the in-plane width and b the out-of-plane thickness. 
An average normal stress σ̅yy is applied to the upper and lower 
boundaries of the unit cell, and equilibrium at each node requires 
that 


iϵNj

Fix = 0 and 


iϵNj
Fiy = 0, at each node j, where Nj are the 

set of ligaments that connect to each node. The solutions of these 
equations determine all σai

. Assuming the ligaments are elastic- 
brittle with a failure stress, σf , this model predicts the unit cell’s 
strength, σm, for any node perturbation. This approach applies to 
stretch-dominated lattices with narrow ligaments. Here, t = L/10, 

A B

C

D

Fig. 1. A) A single unit cell showing the introduction of disorder by perturbing node locations by δ. Representative networks with varying average levels of 
disorder B) δ̅ = 0, C) δ̅ = 0.15, and D) δ̅ = 0.27.
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which can be approximated as a stretch-dominated geometry (43), 
although there may be additional stresses due to bending and 
stress concentrations at nodes that are not considered. This model 
may also be adapted to other cases, such as bending-dominated 
structures, through more sophisticated failure criteria.

The predictions from the analytical model are verified using 2D 
finite element simulations of the unit cell with varying perturba-
tions to the central node (Fig. 2A–D) under uniaxial tension 
(σ̅yy = σappl). The node is perturbed at disorder δ from 0 to 0.4 in in-
crements of 0.05, with seven simulations at each level of disorder 
corresponding to perturbing the node an angle from 0◦ to 90◦ in in-
crements of 15◦. Periodic boundary conditions were applied to the 
left and right sides of the unit cell. The average maximum princi-
pal stress, σmps, in the middle of each ligament was used to predict 
the failure.

The average strengths of the unit cells as a function of disorder, 
relative to an unperturbed unit cell are given in Fig. 2E for the sim-
ulations and the analytical model. The agreement between the 
two is close, although the analytical model slightly overestimates 
the strength. This discrepancy arises due to stress concentrations 
at the nodes and bending stresses that are not captured by the 
analytical model, as well as the omission of periodic boundary 
conditions in the analytical model. The strength of the unit cell 
monotonically decreases with increasing δ, but the average loss 
of strength remains ≤25% at the highest level of disorder. The re-
duction in strength is due to the loss of symmetry, with the stress 
being transferred to at least one ligament that is oriented more 
along the line of loading than the others. While each ligament 
has identical strength, the loss of symmetry results in higher 
stress in at least one ligament under the same loading, leading 
to failure at lower applied loads. The complete set of simulation 
results showing failure as a function of perturbation angle are in-
cluded in the Fig. S4.

Effect of disorder on toughness
The fracture behaviors of lattices with varying geometries were 
calculated using 2D linear elastic finite element simulations. 

Crack growth was simulated by running the model multiple times, 
as described below. For a given network geometry, the model was 
run once to calculate stresses in the network. The ligament with 
the highest stress was identified and deleted. The updated model 
was then run again to identify the next ligament that would fail. 
This process was repeated for up to 50 ligament failures. As the 
applied load and stresses are linearly related, the applied load at 
each ligament failure was determined by scaling the ligament 
stress to the failure stress. Additional details about the model 
geometry and simulations are provided in the Materials and 
methods section, and videos depicting the simulated crack propa-
gation for an ordered and representative disordered lattice are 
provided in the Supplementary material.

The load-displacement curves for the ordered lattice and ten 
distinct disordered lattices, each with δ̅ ≈ 0.15, are shown in 
Fig. 3A. While the damage curves for the disordered configura-
tions exhibit considerable variability, they predominantly main-
tain loads that exceed those of the ordered lattice, indicating 
higher damage resistance. Crack propagation and toughness 
were investigated for 420 unique geometries of varying levels of 
disorder between 0 ≤ δ̅ ≤ 0.375. This allows for the effect of dis-
order to be quantified independent of the specific lattice 
geometry.

The crack path through the network, as shown for the repre-
sentative geometries in Fig. 3B, is identified by tracking the loca-
tion of ligament failures. In the case of the ordered lattice, crack 
propagation follows a straight path, akin to a crack in a homoge-
neous material. Conversely, in most disordered lattices, the dam-
age path is neither straight nor always continuous. We define an 
effective crack tip by considering the stress distribution in the net-
work. As shown in Fig. 3B, averaging the stress across the height of 
the network at every x-location results in a homogenized stress 
profile that is similar to the stress distribution around a crack 
tip in a continuum material with a process zone (40). The effective 
crack length, a∗, is determined by identifying the location of the 
maximum tensile stress arising from the singular-like region of 
the stress distribution (Fig. 3B). This methodology for defining a∗

not only aligns with the physical behavior of cracks but also 

A B E

C D

Fig. 2. Representative finite element stress distributions showing the maximum principal stresses σmps relative to the average applied stress, σappl, for 
unit cells with A) δ = 0, B) δ = 0.10, C) δ = 0.20, and D) δ = 0.30. E) Relative unit cell strength (mean ± SD) as a function of disorder. Relative strength (mean ± 
SD) from the analytical model is given by the solid curves.
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simplifies the subsequent toughness calculation, since the effect-
ive crack length monotonically increases during failure but does 
not require an assumption of self-similarity of the crack front. 
The stress distribution also provides a measurement of the effect-
ive process zone size. We define the effective process zone size, λ∗, 
as the full-width at half-maximum of the stress distribution 
around the effective crack length. For the ordered lattice, 
λ∗ ≈ 2L, which confirms that the unit cell is comparable in size to 
the process zone.

The toughness is predicted by considering the strain energy 
change during crack propagation. Most of the strain energy 
change is localized to the unit cells around the ligaments that rup-
ture, giving the total change in strain energy, ΔUel, released during 
crack propagation as

ΔUel = −
η
2

∫V ϵσmdV, (1) 

where V is the volume of the ligaments in the unit cell, σm is the 
stress in the unit cell at failure, ϵ is the strain, and η is the number 
of ligaments that fail. Since the network is approximately stretch- 
dominated, stress and strain are taken as uniform through the 
volume of each ligament, with ϵm = σm/E, where E is the Young’s 
modulus. Thus, the critical energy release rate of the 2D lattice is

Gc = −
1
b

ΔUel

Δa∗
≈

1
b

σ̅2
m

E

 

Vη
′

, (2) 

where η′ = Δη/Δa∗, and σ̅m is the average stress in the unit cell at 
failure. Thus, the relative toughness of a disordered lattice, com-
pared to the ordered lattice toughness, Go, is

Gc

Go
=

σ̅m

σ̅0

 2 η′

η′o

 

, (3) 

where ̅σo is the strength of an unperturbed unit cell, η′o is the num-
ber of ligament failures per effective crack propagation for the or-
dered lattice, and any small volume changes of the ligaments 
between the ordered and disordered lattices are neglected.

The first term on the right-hand side of Eq. 3 is ≤1 for all δ (see 
Fig. 2E). Thus, any enhancements in toughness must come from 
sufficient distributed damage to account for the loss in local 
strength. The toughness of all simulated geometries (mean ± 
SD), relative to the ordered lattice, are shown in Fig. 3C as a func-
tion of Eq. 3. The results are well-described by the relationship and 
significant enhancements in toughness (up to more than 3×) are 

achieved as a result of the distributed damage. A linear fit to the 
data in Fig. 3C (R2 = 0.97) has a slope of 1.0, showing good agree-
ment with the model. Notably, there are a small number of out-
liers with high toughness, but few outliers with low toughness. 
This is expected based on Eq. 3, as there is no mechanism to gen-
erate significantly lower toughness than the ordered lattice. The 
number of ligament failures cannot decrease relative to the or-
dered lattice, and the losses in local strength are relatively small 
(≤25%), resulting in a toughness that is typically equal to, or great-
er than, the ordered lattice.

Experimental results and discussion
Fracture experiments were performed on laser-cut polymethyl-
methacrylate (PMMA) specimens as detailed in the Materials 
and methods section (44). Three sets of specimens were prepared: 
an ordered lattice and two sets of disordered structures. The dis-
ordered structures were generated by selecting two geometries 
randomly from the simulated lattices, and then scaling the aver-
age perturbation of each geometry to achieve average levels of dis-
order in the range 0 ≤ δ̅ ≤ 0.34. This allowed for the effect of the 
disorder magnitude to be investigated without introducing any 
bias arising from specific geometries. A total of 33 specimens 
were tested, which included 3 ordered specimens, and 15 speci-
mens in each of the disordered sets.

During fracture testing, stresses were visualized using photoe-
lasticity. For a photoelastic material such as PMMA (45), the local 
stresses in the material alter the propagation of light through the 
specimen. When imaged through cross polarizers, this effect is 
visible such that the intensity of the observed light is directly re-
lated to the difference in principal stresses. This technique allows 
for the identification of failing ligaments by monitoring changes in 
local light intensity during fracture. Instances of ligament failure 
are shown in Fig. 4A for an ordered lattice and in Fig. 4B for a dis-
ordered lattice, where each specimen has the same length of crack 
propagation. The observations reveal that disordered lattices ex-
hibit more distributed damage and a higher number of ligament 
failures during fracture (35 for a disordered lattice with δ̅ = 0.27 
vs. 27 for the ordered lattice for cracks propagating over ∼100  
mm). Additional details on the photoelastic experiments are pro-
vided in the Materials and methods section, and videos of the frac-
ture experiments shown in Fig. 4A and B are provided in the 
Supplementary material.

A B C

Fig. 3. A) Representative load-displacement behavior for the ordered lattice and ten geometries with ̅δ = 0.15. B) Representative ordered and disordered 
geometries, with ligament failure indicated. The average stress profiles along the crack plane are shown with the effective crack tip at the peak stress 
indicated along with the process zone, λ∗. C) Toughness (ave. ± SD for all ligament ruptures) of each simulated geometry, relative to the ordered lattice. 
Results plotted vs. Eq. 3. A linear fit (R2 = 0.97) is also indicated.
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Representative load–displacement curves for ordered and dis-
ordered lattices are given in Fig. 4C. Specimens with disordered 
structures sustained higher loads during failure compared to 
the ordered lattice. However, specimens at the highest levels of 
disorder (δ ≥ 15%) showed no additional enhancements in load 
capacity.

Experimental toughness values as a function of the disorder are 
shown in Fig. 4D, with each point being the mean and standard 
deviations for three specimens. The toughness of the lattices 
was calculated from the load–displacement data using a modified 
double cantilever beam analysis (46), as described in the Materials 
and methods section. Toughness predictions from the finite elem-
ent simulations are also shown, where each data point corre-
sponds to ∼60 geometries (mean ± SD). By considering many 
geometries at each level of disorder, the toughness represents 
the average toughness for a system where the number of unit cells 
is large, rather than simply a measurement of any one unique 
geometry. The qualitative and quantitative agreement between 
the simulations and experiments further verifies this result.

Consistent with the predictions of Eq. 3, distributed damage en-
hances the toughness of the structure compared to the ordered 
lattice, since η′/η′o > 1. The effects of confinement place an inher-
ent constraint on the extent of the distributed damage and, conse-
quently, the maximum possible toughness enhancement. When 
the peak value of η′ is reached but disorder increases further, a re-
duction in toughness is expected due to diminished local strength. 
This is apparent in both the experimental and simulation data, 
where the introduction of disorder initially leads to a rapid in-
crease in toughness as a result of the distributed damage. The en-
hancement plateaus at δ̅ = 0.15 due to the confined nature of the 
lattice studied here, and beyond δ̅ = 0.2 the toughness begins to 
decrease as the local strength is reduced. To verify that the en-
hancements observed were not unique to the specific lattice and 
unit cell size, an additional limited set of simulations of lattices 
of the same overall size but varying unit cell length, from L = 3 
mm to L = 7 mm, were performed. Toughness enhancement due 
to disorder was seen in these cases, as discussed in the 
Supplementary material and shown in Fig. S5, but the maximum 
possible enhancement relative to an ordered lattice decreases 
with increasing unit cell size as the possible number of ligament 
failures is reduced.

Experimentally, the maximum toughness achieved was 2.6× 
that of the ordered lattice at ̅δ = 0.15. The value of the optimal lev-
el of disorder is a function of the definition of disorder, which is not 
standardized. Other methods for characterizing disorder, such as 
Voronoi tessellation (47), will provide qualitatively identical re-
sults to those shown here, but at varying quantitative levels of 
disorder.

Conclusions
Disorder increases the fracture toughness of architected lattice 
materials by generating distributed damage. Through finite elem-
ent simulations of varying lattice geometries, enhancements are 
shown to be common to the set of geometries characterized by 
the level of disorder, not for any specific architecture. These en-
hancements are achieved with minimal losses in strength of 
≤25%, relative to the ordered lattice, and negligible changes in 
stiffness of typically <10%, relative to the ordered lattice. For a 
confined lattice, a maximum enhancement in toughness is identi-
fied due to the inherent limit of the extent of the distributed dam-
age, leading to an optimal level of disorder. The enhancements in 
toughness are verified through experiments using photoelasticity 
to visualize the damage during failure. The maximum increase in 
toughness was 2.6× at ̅δ = 0.15. These enhancements in toughness 
demonstrate how constraining the consideration of architected 
materials to periodic structures significantly limits the possible 
mechanical performance.

A triangular lattice was considered in this work as a represen-
tative geometry, but the mechanics framework can be applied to 
a broad set of lattices with varying topology. The approach is 
material-agnostic and is expected to apply to most elastic-brittle 
materials. The framework presented in this work can be applied 
to inform the failure analysis of a variety of disordered structures, 
significantly expanding the design spectrum of architected mate-
rials and enabling enhancements in toughness.

Materials and methods
Specimen fabrication
Fracture specimens were fabricated from 6 mm thick, cast, trans-
parent polymethylmethacrylate (PMMA) sheets, which were 

A

B

C D

Fig. 4. Photoelastic images of A) an ordered lattice and B) a disordered lattice (δ̅ = 0.27), with ligament failures indicated. C) Representative 
load-displacement behavior for experimental specimens at varying levels of disorder. D) Toughness, relative to the ordered lattice, as a function of 
disorder percentage, for all finite element simulations (mean ± SD of ∼60 geometries for each point), and experiments (mean ± SD for three identical 
specimens at each point).
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laser-cut using an x1250 laser cutter (Eduard, Inc., Denmark) with 
a 150-W laser operating at 80% power and a cutting speed of 
15 mm/min. A dual-pass laser cutting approach was used to miti-
gate the effects of residual heat. Furthermore, to avoid unintend-
ed failure of the solid beams and to isolate failure to the 
lattice ligaments, rather than the nodes, an additional raster cut 
was introduced in the middle of each ligament at a laser speed 
of 30 mm/min, resulting in a consistent cut depth of ∼2 mm.

Ligament widths were measured optically and found to be 
t = 0.55 mm ± 0.05 mm, and the unit cell length was measured to 
be L = 4.95 mm ± 0.05 mm, both of which closely match the nom-
inal value used in the simulations (see Fig. S1). Specimens were 
annealed for 4 h in a 90 ◦C oven to relieve residual stresses from 
fabrication. This temperature was chosen as it is close to but be-
low the glass transition temperature of PMMA (44).

Two sets of disordered lattices were fabricated using two dis-
order seeds describing the directions and relative magnitudes of 
all the node perturbations. To generate disordered lattices, the 
nodes of the ordered lattice are perturbed following the seed, 
then lattices of varying magnitudes of disorder are generated by 
changing the average magnitude of the perturbations, with the 
directions and relative levels of perturbation being conserved. 
Structures at five levels of disorder between δ̅ = 0.07–0.34 were 
generated, along with an ordered lattice with δ̅ = 0 for a total of 
11 unique geometries. Three identical specimens of each geom-
etry level were fabricated and tested (33 total specimens). This 
process is depicted in the Fig. S2.

Fracture testing and photoelasticity
Specimens were tested on a custom-built tensile testing instru-
ment with dual-head control. Specimens were tested under 
displacement control, with each head moving at a rate of 
2 mm/min, for a total displacement rate of 4 mm/min. Load 
and displacement measurements were made at a rate of 
100 Hz. Tests were terminated after a crack had propagated 
through the entire specimen.

For each seed geometry and disorder level, one specimen was 
selected for imaging via photoelasticity. The uniformity across 
specimens enabled the use of a single specimen per group for 
representative analysis. The transmission photoelastic setup 
was implemented as detailed in Ref. (45, 48), incorporating circu-
lar polarizers (Edmund Optics, NJ, USA), and employing white 
light illumination. Imaging was executed with a Point Grey cam-
era, capturing data at a frequency of 2 Hz, to visualize the stress 
distribution and crack propagation behavior. The intensity of the 
observed light I, is known to be

I ∝ sin
πCΛbΔσ

Λ

 2

, (4) 

where Λ is the wavelength of the light, b is the specimen thick-
ness, Δσ is the difference in principal stresses, and CΛ is a mater-
ial constant that relates the wavelength of the light to the 
photoelasticity of the material (45). For a stretch-dominated lat-
tice, the axial stress in the ligament is dominant, thus Δσ ≈ σa. 
Thus, as ligaments fail, the intensity of the observed light in 
each ligament will change according to the resulting stress distri-
bution. This change in light intensity is used to identify ligament 
failures and the path of damage through the lattice during 
fracture.

Toughness was calculated from the load-displacement data 
using a modified analysis for a double cantilever beam, with cor-
rections for shear and a compliant foundation using the Winkler 

foundation model. The crack length, a was determined using the 
theoretical compliance (46) of the system, C, given by

C =
8
Eb

3
2

α0.75 +
E

4Kμ
+ 3

��
α
√

 
a
h

 
+ 3α0.25 +

3
2π

��
E
μ

 
a
h

 2
+

a
h

 3
 

,

(5) 

with α = E/6ET, where E is the Young’s modulus of the PMMA, μ is 
the shear modulus, here taken as μ = E/2(1 + ν) for an isotropic ma-
terial, where ν ≈ 0.3 is the Poisson’s ratio, ET is the effective tensile 
modulus of the lattice, K is a constant equal to 5/6, and h is the 
thickness of the beams. This model does not account for addition-
al machine compliance, because this had a negligible effect in our 
tests.

The effective crack tip was calculated using the compliance of the 
specimens, rather than using the stress distributions as was done in 
the simulation analysis, as these were not available from the experi-
mental tests. The effective tensile modulus of the foundation, ET, is 
predicted (42) to be ET ≈ 1

3 (ρ)E for a stretch-dominated lattice, where 
ρ, is the relative density of the lattice. For the lattices used in this work 
where t = L/10, the effective modulus is predicted to be ET ≈ 0.129E. 
This was found to be in good agreement with the experimentally 
measured compliance.

The energy release rate of the lattice is calculated as a function 
of crack length as

G =
P2

2b
∂C
∂a

, (6) 

where P is the load. For a homogeneous linear elastic material, the 
critical energy release rate, Gc, is expected to be a constant with 
continuous crack propagation. However, in the disordered lattices 
this is not guaranteed. Variations in toughness result in cracks 
that arrest and propagate (35), as shown by the jumps in the load- 
displacement curves in Fig. 4C. The toughness of the lattice corre-
sponds to the critical energy release rate such that crack advance 
occurs. Thus, the average toughness of the lattice was calculated 
from all G values during which the crack length increased as indi-
cated by the change in compliance of the specimen. The tough-
ness showed no systematic change as a function of crack 
growth (see Fig. S6B), indicating that the average toughness is an 
accurate representation of the system’s fracture resistance.

Model generation and finite element simulations
Models were generated for finite element simulations using the 
open-source computer-aided design software, FreeCAD, inte-
grated with Python. Lattice geometries were generated by creating 
a triangular lattice of nodes and connecting them with rectangu-
lar ligaments. To introduce disorder to the lattice, nodes were per-
turbed in x and y by selecting two random numbers from a 
Gaussian distribution with zero mean. As the magnitude of the 
variance in the distribution is increased, larger node perturba-
tions occur. Using the “random” command from SciPy, pseudo-
random numbers are generated instead of purely random 
numbers, with the exact number being reproducible if the same 
“seed” value is input into the number generator. For this work, 
∼60 seeds were generated, and scaled to seven different levels of 
disorder, creating 420 unique lattices. This process is also shown 
in the Fig. S2. The lattices consist of 30 horizontal nodes and 5 ver-
tical nodes, with a unit cell size of L = 5 mm and ligament thick-
ness t = 0.5 mm. The overall length of the lattice is 150 mm, and 
the thickness is 20 mm, with a portion of the top and bottom of 
the lattice being embedded in the solid beams. The beams are 
13 mm thick and 225 mm long, with the loading points 175 mm 
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from the far edge of the lattice. A representative model geometry 
with an ordered lattice is shown in the Fig. S3.

Finite element simulations were performed in ABAQUS (2020, 
Providence, RI, USA) by importing the FreeCAD model file of the 
lattice. The lattice was modeled under 2D plane strain conditions, 
with one mounting point in the beams being fixed in x and y, and 
the other under a 1 mm displacement boundary condition in y and 
fixed in x. The elastic modulus was taken as E = 1 GPa, and the fail-
ure stress was taken as σf = 20 MPa. The linearity of the system al-
lows for the results to be easily scaled to materials of differing 
stiffness and/or strength. The models were meshed with bilinear 
plane-strain quadrilateral elements (CPE4), with a free mesh in 
the lattice and a uniform mesh in the beams, with a mesh size 
of 0.05 mm. Approximately 110,000–130,000 elements were used 
per simulation, depending on the exact geometry. The mesh size 
was refined until there was a <0.5% difference in the failure force 
of an ordered and representative disordered lattice with a 10% in-
crease in mesh density.

To simulate crack propagation, the ligament under highest 
stress is identified in the finite element model. The applied dis-
placement and corresponding load are scaled until the average 
von Mises stress in the ligament equals the failure stress, σf . The 
von Mises stress was used to account for possible nonuniformity 
in the stress distribution; however, as shown by the unit cell ana-
lysis, the results are expected to be very similar to a maximum prin-
cipal stress criterion. The stresses are averaged in each ligament 
inside an area centered in the ligament with a radius of 2t. This liga-
ment is then deleted from the FreeCAD model and a new finite 
element simulation is run. This process is run multiple times and 
up to 50 times per geometry. Since each simulation in the sequence 
is treated as independent of the others, it is possible that the pre-
dicted displacement that a ligament fails at is smaller than the dis-
placement at which the previous ligament failed. During a 
continuous fracture test under displacement control, this is not 
possible. Instead, these ligaments are expected to fail unstably dur-
ing testing, and these data points are not considered in the analysis.

The simulated lattices did not have precracks, as shown in 
Fig. 1B–D to prevent any bias in the development of any distrib-
uted damage and the eventual crack path. Toughness was aver-
aged over all stable points during the crack propagation, and the 
toughness showed no systematic variation over the crack growth 
(see Fig. S6A), indicating that the lack of a precrack did not affect 
the calculated fracture resistance of the lattice.
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Supplementary material is available at PNAS Nexus online.
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