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Jamming, Force Chains and Fragile Matter
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We consider materials whose mechanical integrity is the result of a jamming process. We argue
that such media are generically “fragile”: unable to support certain types of incremental loading
without plastic rearrangement. Fragility is linked to the marginal stability of force chain networks
within the material. Such ideas may be relevant to jammed colloids and poured sand. The crossover
from fragile (when particles are rigid) to elastoplastic behavior is explored.
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Consider a concentrated colloidal suspension of hard
particles under shear (Fig. 1.(a)). Above a certain thresh-
old of stress, this system will jam [1]. (To observe such an
effect, stir a concentrated suspension of corn-starch with
a spoon.) In this Letter, we propose some simple mod-
els of jammed systems like this, whose solidity stems di-
rectly from the applied stress itself. Such systems may be
fundamentally different, in their mechanics, from other
classes of material, such as elastic or elastoplastic solids.

In colloids, jamming apparently occurs because the
particles form “force chains” along the compressional di-
rection [1]. Even for spherical particles the lubrication
films cannot prevent contacts; once these arise, an array
or network of force chains can, in principle, support the
shear stress indefinitely. (Brownian motion is neglected
here and below.) By this definition, the material is solid.

A simple model of a force chain assumes a linear string
of rigid particles in point contact. Crucially, this object
can support only tangential loads [2] (Fig.2.(a)): succes-
sive contacts must be colinear, with the forces along the
line of contacts, to prevent torques on particles within
the chain. (Friction at the contacts does not obviate this
requirement, nor does particle asphericity.)

Let us model a jammed colloid by an assembly of such
force chains, characterized by a director n, in a sea of
“spectator” particles, and incompressible solvent. (We
ignore for the moment any “collisions” between force
chains or deflections caused by weak interaction with the
spectators.) In static equilibrium, with no body forces
acting, the compressive stress tensor is then

σij = Pδij + Λ ninj (1)

where P is an isotropic pressure, and Λ a compressive
stress carried by the force chains.

Eq.(1) permits static equilibrium only so long as the
applied compression is along n; while this remains true,
small, or even large, incremental loads can be accom-
modated reversibly, by what is (ultimately) an elastic
mechanism. But the material is certainly not an elas-
tic solid, for if instead one tries to shear the sample in a
slightly different direction (causing a rotation of the prin-
cipal stress axes) static equilibrium cannot be maintained

without changing the director n. And since n describes
force chains that pick their ways through a dense sea of
spectator particles, it cannot simply rotate; instead, the
existing force chains must be abandoned and new ones
created with a slightly different orientation. This entails
dissipative, plastic, reorganization, during which the sys-
tem will re-jam to support the new load.

FIG. 1. (a) A jammed colloid (schematic). Black: force

chains; grey: other force-bearing particles; white: spectators.

(b) Idealized rectangular network of force chains.

The jammed colloid is an example of fragile matter.
The medium can statically support applied shear stresses
(within some range), but does so by virtue of a self-
organized internal structure, whose mechanical proper-
ties have evolved to support the load itself. Its incre-
mental response can be elastic only to compatible loads;
incompatible loads (in this case, those with a different
compression axis), even if small, will cause finite, plastic
reorganizations. The system resembles a liquid crystal,
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except that incompatible loads cause transient rearrange-
ment, not steady flow. An inability to elastically support
some infinitesimal loads is our definition of “fragility”.
This extends naturally to small perturbations of other
types, such as changes in temperature, which can lead to
“static avalanches” of rearrangements [3].

Jamming may lead generically to fragile matter. If a
system arrests as soon as it can support the external load,
its state is likely to be only marginally stable. Incom-
patible perturbations induce rearrangements, leaving the
system in a newly jammed, equally fragile, state. This
scenario is related to suggestions that rigidity emerges by
successive buckling of force chains (impeded by specta-
tors) in glasses and granular matter [4]. It also resembles
self-organized criticality (soc) [5]; we return to this later
(see also [3,6]). However, we focus first on simple models
of the fragile state in static equilibrium.

Consider again the (homogeneously) jammed colloid.
What body forces can it now support without plastic ro-
tation of the director? Various models are possible. One
is to assume that Eq.(1) continues to apply, with P (r)
and Λ(r) now varying is space. If P is simply a fluid
pressure, a localized body force can be supported only if
it acts along n. Thus (as in a bulk fluid) no static Green
function exists for a general body force. To support gen-
eral loadings in three dimensions in fact requires more
than one orientation of force chain, perhaps forming a
network or skeleton [7–10]. A simple model capable of
describing this is:

σij = Λ1 ninj + Λ2 mimj + Λ3 lilj (2)

The directors n,m, l describe three nonparallel popula-
tions of force chains and can also be seen as character-

istics along which the static Green function propagates
[12,15]. The Λ’s are compressive pressures acting along
these. Body forces cause Λ1,2,3 to vary in space.

Based on the above, we can distinguish different lev-
els of fragility, according to whether incompatible loads
include localized body forces (“bulk” fragility), or are
limited to forces acting at the boundary (“boundary”
fragility). (With Eq.(2), for example, a body force can
always be transmitted to the boundary but such bound-
ary forces cannot then be specified independently – see
below.) In disordered systems one might also distinguish
between macro-fragile responses involving changes in the
mean orientation of force chains, and the micro-fragile re-
sponses of individual contacts. Here we focus on macro-
fragility; but if the medium is susceptible to long-ranged
‘static avalanches’ [3] the distinction may be blurred.

Returning to the model of Eq.(2), the chosen values of
the three directors (two in 2-d) clearly should depend on
how the system came to be jammed (its “construction
history”). If it jammed in response to a constant stress,
switched on suddenly at some earlier time, one can argue
that the history is specified purely by the stress tensor

itself (unless body forces dominate). In this case, if one
director points along the major compression axis, then

by symmetry any others should lie at rightangles to it
(Fig. 1.(b)). Applying a similar argument to the inter-
mediate axis leads to the ansatz that all three directors lie
along principal stress axes; this is perhaps the simplest
model in 3-d [11]. (One version of this argument links
force chains with the fabric tensor [9], which is itself typ-
ically coaxial with the stress [10].) If so, Eq.(2) does not
change form if an arbitrary isotropic pressure field P is
added. With perpendicular directors as just described,
Eq.(2) becomes the “fixed principle axes” (fpa) model.
We proposed this recently to describe stress propagation
in conical piles of sand, constructed by pouring cohesion-
less grains from a point source onto a rough rigid support.
This model accounts quite well for the forces measured
experimentally beneath conical sandpiles [14,12,6]. More
generally, Eq.(2) can be obtained by assuming a linear
closure relation between the components of the stress ten-
sor [12].

Although the formation of dry granular aggregates un-
der gravity is not normally described in terms of jam-
ming, it is closely related. Indeed, the filling of silos and
the motion of a piston in a cylinder filled with grains
exhibits jamming and stick-slip phenomena related di-
rectly to formation of force chains in these geometries;
see [13]. Hence fragile models of granular media must
merit serious consideration. They share some features
with recent hypoplastic models of such media [9]. Granu-
lar matter has, however, traditionally been described by
various forms of elastoplasticity, which we now compare
and contrast with the above idea of fragility.

The characteristics evident in Eq.(2) are directly re-
lated to the hyperbolic nature of the differential equations
governing stress propagation in fragile packings [15,12,6].
With a zero-force boundary condition at the upper sur-
face of a pile [6], this gives a well-posed problem: the
forces acting at the base follow uniquely from the body
forces by integration: the Green function (in 2-d) com-
prises two rays connecting a source to the base [15,12].
(Closely analogous remarks apply in three dimensions.)
The same does not hold [16] for traditional elastoplastic
continuum models [17] whose equations are (in simple
cases) elliptic in elastic zones and hyperbolic in plastic
ones. In the sandpile, where an elastic zone contacts the
support, the forces acting at the base cannot then be
found without specifying a displacement field there. But
such a displacement field has no clear physical meaning
for a sandpile created by pouring. To define it, one re-
quires a reference state in which the stresses (gravity) are
removed. Such a state is undefined, just as it is undefined
for a jammed colloid which, in the absence of the applied
shear stress, is a fluid.

This ‘elastic indeterminacy’ of sandpiles has no facile
resolution [16]. Suggestively, the underlying problem (ab-
sence of a reference state) arises precisely when elasto-
plasticity might give way to fragility: in systems whose
solidity arises because of the load itself. Nonetheless, a
crossover between fragile and elastoplastic descriptions
may exist, at least in the context of very small incremen-
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tal loads (for which the reference state can be defined in
terms of a pre-existing, gravitationally loaded pile). For
example, one might expect that, for poured sand, sound
waves of sufficiently small amplituded could propagate
normally (although in fact this is far from obvious experi-
mentally [19]). Likewise in our jammed colloid, extremely

small rotations of the principal axes might be accommo-
dated by an elastic, and not a plastic, mechanism.

We next show, for a specific example of a fragile gran-
ular skeleton, that just such a crossover can arise from a
slight particle deformability. We consider a highly ideal-
ized, 2-d rectangular skeleton of rigid particles, Fig.1.(b).
In this material, where the tangential compressive forces
balance at each node [20], the shear stress must vanish
across planes parallel to n and m (that is, σnm = σmn =
0). For simplicity we also assume that the ratio Λ1/Λ2

(and its inverse) cannot exceed some constant K (for ex-
ample to avoid buckling of the stress paths). This implies
a Coulomb-like inequality, |σpq | ≤ σqq tan φ, for all other
orthogonal unit vector pairs q,p; here tanφ is a material
constant such that K = (1 − sin φ)/(1 + sinφ).

Next a small degree of particle deformability is intro-
duced. This relaxes slightly the colinearity requirement
of forces along chains, because the point contacts between
particles are now flattened (Fig.2.(b)). Clearly the ratio
ǫ of the maximum transverse load to the normal one will
vanish in some specified way (dependent on contact ge-
ometry) with the mean particle deformation. The same
ratio ǫ defines, in effect, the maximum elastic angular
deviation of the force chains. The system can thus be
described as an (anisotropic) elastic body subject to a
yield criterion of the following form:

|σpq| ≤ σqq tan Φ(q · n) (3)

where Φ(x) is a smooth function that is small (of order ǫ)
in a narrow range (of order ǫ wide) of orientations around
x = 0 (and x = 1), but close to φ outside this interval.

For finite ǫ this material will have mixed ellip-
tic/hyperbolic equations of the usual elastoplastic type.
But the resulting elastic and plastic zones must some-
how arrange themselves so as to obey the fpa model to
within terms that vanish as ǫ → 0. If, in a sandpile, ǫ
is small but finite, then stresses will depend on the de-
tailed boundary conditions at the base of the pile, but
only through small corrections to the leading (fpa) re-
sult. These deviations can accommodate an elastic re-
sponse to very small incremental loads (on a scale set by
ǫ). But for the macroscopic stress pattern to differ signif-
icantly from the hyperbolic prediction, one requires ap-

preciable particle deformation. When the mean stresses
are large enough to cause this (ǫ ≃ 1), “ordinary” elastic
or elastoplastic behavior will be recovered. Conversely,
the fragile, hyperbolic limit emerges as the limit of high

particle rigidity for this simplified model skeleton. Thus
fragile models of granular or jammed matter, properly
interpreted, need not contradict (though equally they do
not require) an underlying elastoplastic description.

FIG. 2. (a) A force chain of hard particles (any shape) can

statically support only tangential compression. (Body forces

acting directly on these particles are neglected.) (b) Finite

deformability allows small transverse loads to arise.

How valid are these ideas for granular media? The ex-
istence of tenuous force-chain skeleton is hardly in doubt
[7,22,8–10]. Simulations of frictional spheres show most
of the deviatoric stress to arise from force chains, while
tangential interparticle forces and “spectator” contacts
contribute mainly an isotropic pressure [8,10]. (Of course
the specific geometry of Fig.1.(b) is grossly oversimpli-
fied: although the force chains are anisotropic, they are
not very straight and have frequent collisions [21,8].) Are
such skeletons actually fragile, as our models suggest, or
do they have an appreciable range of incremental elastic
response? And, for sand under gravity, does a fragile or
an elastoplastic model better describe its (nonperturba-
tive) response to gravity itself?

We believe that granular media are often close to the
fragile limit. Firstly, we return to an earlier argument:
in systems whose solidity arises by a jamming process,
fragility may arise generically if the material arrests in
states that can only just support the applied load. This
may be a reasonable picture for sandpiles created by
pouring. It could also apply to unconsolidated dry grains
in various other geometries.

Second, the probability distribution for interparticle
forces p(f) does not vanish at zero force [22]. This is con-
sistent with the idea that a slight, incompatible change
in load (relative scale δ/f̄ with f̄ the mean interparticle
force) can induce a fraction p(0)δ of contacts to switch
from spectator type (f ≃ 0) to force-chain type (f ≃ f̄).
The effect of such rearrangements would then be com-
parable with the elastic response (f̄ → f̄ ± δ), and so
formally destroy the elastic regime; we expect this ef-
fect to be amplified by any long-range rearrangement of
force chains that a local contact change may induce [3].
Third, simulations do indeed show strong rearrangement
of the skeleton under small changes of compression axis;
the skeleton is indeed “self-organized” [8,10]. There is
also evidence in some instances for internal cascades of
rearrangement [3,13] in response to small disturbances.
Although the latter is strongly reminiscent of soc [5],
our simplified models show that fragility is a rather dif-
ferent concept which can arise, at least in principle, in
regular geometries, and without the self-similarity in the

3



response to a small perturbation that characterizes soc.
In fact soc-like concepts underly recent discussions of dy-
namic attractors in hypoplastic models [9], and are not
far removed from the (much older) critical state theories
of soil mechanics [18]. The latter primarily address dila-

tancy: the tendency of dense granular media to expand
upon shearing. Jamming can be viewed as the constant-
volume counterpart of this process.

We await further experimental guidance on the extent
to which granular materials are, in practice, fragile. Var-
ious experimental tests of specific fragile models are sug-
gested elsewhere [12,6,3]; these predict anomalies in both
correlation and response functions. More generally, the
negligibility of any incremental elastic range (as postu-
lated in fragile models for incompatible loads) can be
probed by various experiments including sound transmis-
sion. The latter do indeed show very peculiar behaviour
[19], possibly related to the fact that the sound wave
itself causes rearrangements. In addition, computer sim-
ulations should clarify the relationship between fragility
and the extreme nonlinearity which, for cohesionless dry
sand, enters because tensile contact forces are forbidden.
Only when the probability density p(0) of zero contact
force becomes small can this be safely ignored; and this
might not arise before strong particle deformation occurs
(ǫ ≃ 1).

More generally, other candidates for fragile matter in-
clude jammed colloids, weak particulate gels, and flow-
induced defect textures in liquid crystals, all of which can
self-organize so as to support an applied stress.

We are grateful to P. Evesque, P.G. de Gennes,
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(UK) Grants GR/K56223 and GR/K76733.

Note added: we also refer the reader to C. Moukarzel,
cond-mat/9803120, where somewhat related ideas can be
found.
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