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Microbial repair and ecological justice: A
new paradigm for agriculture

Check for updates

George Cusworth1 , B. Brett Finlay2,3, Nhu H. Nguyen4 & Jamie Lorimer3,5

In this paper, we put forward a case for repair by showing how food security, rural economic resilience,
ecological restoration, and environmental justice can be achieved through a repaired agricultural
microbiome. Microbial repair must reverse the damage done by legacies of agricultural intensification
to restore the microbiome’s ability to deliver key agricultural and societal functions. This project
demands collaboration from diverse food system actors building on different types of knowledge.

Agricultural intensification has helped deliver substantial improvements
in foodproduction, but it has come at a great cost to the environment,with
associated risks for human health. New approaches to genome bioinfor-
matics (metagenomics) reveal the microbial consequences of modern
agriculture, including the ability of the soil microbiome to sequester
carbon, regulate the water cycle, and assist in the production of nutrient
rich food1. In both arable and livestock contexts, there is a growing
understanding of themicrobial traffic between the farm, the environment
and the clinic and, as a result, how the widespread use of antimicrobials
drives the evolution of drug-resistant disease strains2. In both cases, a
‘treadmill’ of intensive tillage and agrochemical application denudes soils,
plants and animals of themicrobial diversity required to replenish fertility
and to resist disease3,4 while further increasing reliance on agrochemical
inputs, forcing the agricultural microbiome into a positive feedback cycle
of dependence and damage5.

A common chronological story emerges from across diverse geo-
graphic and agronomic contexts, in which the microbial life that once
supported agricultural functioning has been harmed by a program of
agricultural management predicated on simplicity, acceleration and artifi-
cial input substitution6. Over the course of this perspective piece, we refer to
this as the antibiotic model7. The term does not (just) relate to usage of
antibiotic medicines, but to a general managerial approach predicated on
the disruption and destruction of life on and around the farm. Around the
world, the agricultural microbiome has been thrown into a state of dys-
biosis: dysfunctional and pathological microbiome disequilibrium, that
gives rise to various blowbacks. These are the unintended consequences of
past rounds of agricultural modernization8 and include amplified green-
house gas emissions, biodiversity loss, anti-microbial resistance, zoonotic
disease spillover, and other indirect impacts on human health.

There is a growing awareness amongst scientists, agronomists and
policy makers of the challenges of managing these blowbacks and of the
need for new approaches to address and ideally repair the underlying

agricultural microbial dysbiosis that is causing them. Various commissions
and research programs have begun to explore these topics. They focus, for
example, on animal agriculture and bacterial zoonosis9, on the livestock
sector and the economic and health costs of antimicrobial resistance in
Canada10, or on the relationship between the soilmicrobiome and planetary
health11. While these studies have provided invaluable insight into the
character of different microbial-agricultural interactions, they have done so
in relation to specific agricultural systems or bioregions. We suggest that
additional lessons be generated by seeing them in synthesis—lessons that
can be used to underpin empowered and scientifically informed
intervention.

Our aim in this perspective is to look across existing research and
practice to make the case for microbial repair. Our hope is that by iden-
tifying how different actors in the food system are facing microbial chal-
lenges with similar origins we can encourage them to identified shared
remedies underpinned by a common scientific agenda. We first define
microbial repair, before examining three of its most salient dimensions.We
position this concept as a contribution to established synthetic frameworks
—like One Health—that promote microbial health across the nexus of
human-animal/plant-environmental relations. As an interdisciplinary col-
lective concerned with humans and the microbiome, our aim is to fore-
ground the shared fates of human and natural systems and to provide a
conceptual and scientific rationale to pull together researchers, commercial
actors, policy makers, scientists, and producers working in different
domains of the food system. Microbial repair is, in this way, a political
project concerned with ecological justice, every bit as it is an environmental
and scientific one.

Microbial repair
We define microbial repair in the following way
Microbial repair reverses the damage done by an intensive model of agri-
cultural management predicated on agroecological simplification and high
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inputs of fertilizers, pesticides, and antibiotics. This is achieved through the
cultivation of resilient microbial ecologies capable of reversing the blow-
backs caused by microbial dysbiosis. It demands careful attention to how
microbes interactwith one another, andwith other biotic and abiotic factors
to deliver key agricultural functions. It seeks a just and sustainable food
system that is healthy for people and the planet.

The concept of repair draws attention to the entropy to which social
and ecological systems are exposed12. It speaks to the ethic of agricultural
care needed to keep them in good working order13. Repair sometimes
demands the maintenance of a system, and sometimes demands that it
be transformed to ensure it can meet new challenges14. We use the term
in a way that is expansive enough to accommodate different agents and
recipients of repair. The repair of the agricultural microbiome might be
achieved through, for example, crop diversification and soil health care
practices. But the benefits and costs of this repair, we suggest, must also
to be on the agenda. Proponents of agro-ecology, for instance, advocate
for farmmanagement practices that improve the environmental impacts
of the farm as a means of redistributing the benefits, wealth, and power
that undergirds the food system. Such justice issues might, in other
words, be repaired through the agricultural microbiome. As we argue in
the final section, repair should be orientated towards justice and fairness
by paying attention to both the repair of and the repair through the
microbiome.

Repair has overlaps with other terms that circulate in discussions of
sustainable agriculture, including restoration, regeneration, and rewilding.
These terms share an interest in learning from the past to guide new futures.
They describe working with ecological processes rather than ensuring
human absence in a way that is guided by historical baselines. Repair,
though, is not confined to a retrospective gaze. It embraces new technologies
and research to protect the food system from new threats, and to adapt to
meet new demands.

Researchers seeking microbial repair have conducted (meta)genomic
analysis of soils to understand the micro-organisms that assist in the fixa-
tion, mineralization, solubilization, and mobilization of nutrients, and the
transfer of those nutrients into plant roots15. They have analyzed the com-
position of bovine rumen to understand how different microbes contribute
to the digestion, metabolism, and growth of livestock animals16. And they
have examined the microbes that enable livestock animals17, crops18, and
soils19 to resist disease. These studies aim to transform the food system via
the production of novel biofertilizers, biopesticides, and soil and feed
additives.

Meanwhile, many of the investigations being conducted into the
agricultural microbiome also focus on heritage crops, cultivars, soils, and
animal breeds that have evaded themicrobial changes and dysbiosis caused
by intensive agricultural practices 20–22. As with human microbiome
research23, Indigenous and traditional agroecosystems are being approached
as reservoirs of microbes and data that might enable the curation of a
sustainable and healthy food system. Here, food system transformation is
achieved through the restoration andmaintenance of an erstwhilemicrobial
agroecological order. Table 1 provides some illustrative examples of
microbial repair.

An ecological ontology
The term ontology refers to the nature of being, the entities that exist in the
world, and the relations between them. It concerns the words, ideas, and
organizational structures used tomake sense of material reality.We suggest
that microbial repair requires a new ontology to conceive of the health of
plants, animals and the ecosystems in new and better ways. This first
involves a shift from the chemical metrics that predominate in soil science,
towards a focus on microbiology, concerned less with the presence or
absence of particular molecules, and more with the organisms responsible
for their production andmetabolism. Second it involves a shift in focus from
specific microbes, revealed by the traditional culture-based techniques of
microbiology, towards the microbiome, understood as the collective gen-
ome and ecology of interacting organisms. T
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This moves away from a Pasteurian focus on specific pathogens or
beneficial probiotic organisms, towards an interest inmicrobial interactions
over different temporal durations and spatial scales. Crucially, it requires an
attention to the pathological consequences of microbial absence, as well as
the excessive presence of specific microbes, tracing how the loss of keystone
organisms can lead to the deleterious loss of function as well as generating
hotspots for the emergence of new pathogens24. While this represents a
major andnovel scientific challenge, promisingwork is emerging in this area
developing indicators of abundance and absence to predict future agroe-
cological vulnerabilities25.

Third, a focus on the agricultural microbiome leads to a recognition of
myriad ways in which different elements in the food system are connected.
Microbiome research is revealing how biodiverse rich soils have positive
impacts that ripple out across entire landscapes26,27, how healthy soils create
nutritionally dense foodstuffs28, how the enteric livestock animal micro-
biome shapes the fertilizing potential of the manure produced29, and how
livestock antibiotic use shapes human exposures to antimicrobial
resistance2. This research shows how the things (plants, fields, humans,
livestock animals) that populate the modern agricultural imaginary are not
isolated entities. Through the microbiome, they are best understood as
connected materializations of ecological processes30. This processual phi-
losophy of connectivity informs the ecological ontology of relations, inter-
actions, and entanglements that is necessary for conceiving of microbial
repair 31,32.

An agenda for agricultural microbial repair thus requires us to address
fundamental philosophical questions about the interdependence of human
and agroecological systems, to reconfigure the conceptual architecture of
modern agronomy (predicated on neat divisions between isolated elements
in a system) that defined a previous generation of agricultural research and
development. It thus requires new ways of producing knowledge.

The science of repair
This novel relational ontology emerges from a shift in the methods
employed to produce knowledge in the agricultural sciences and allied
disciplines33. The agricultural intensification that unfolded over the course
of the 20th century was underpinned by a reductionist scientific framework
(what is sometimes referred to as an ‘epistemology’) geared towards the
identification of inputs, cultivars, and management practices capable of
producing more food34, as well as the pathogens that threatened yields. It
focused on discrete elements within a system and sought knowledge on the
fundamental building blocks of agricultural production35. For example,
under these research conditions, nitrogen, phosphorus and potassium
values becameaproxy for soil fertility, livestockmetabolismwasunderstood
as a function of feed-conversion ratios, and the absence of weeds was
understood as the evidence of a healthy crop. Applied science sought to
optimize these elements, severed from their relations, via the sustained
application of biocides, fertilizers, and antibiotics5. This epistemology
helped drive substantial increases in global food production but it has
become central to the agricultural microbial dysbiosis we know today.

To repair this dysbiosis, new scientific principles are needed predicated
on holistic and site-specific knowledge and associated modelling tools and
experimental systems. In the first instance, repair demands knowledge
about the interactions of diverse microbial processes. With the advent of
metagenomics (alongwith transcriptomics,metabolomics, andproteomics)
scientists now have the tools to understand the rich and complex microbial
relations that deliver agroecological functionality (pest resistance, fertility,
crop growth etc.). Byofferinghigher resolution insight into themicrobial life
that underpins agricultural production, integrative ‘omics researchmethods
can deliver a holistic knowledge framework36.

While researchers seek to identify particularmicrobes (e.g. a bacterium
that reduces enteric methane production in bovine rumen), they are also
interested in how individual microbes relate to one another, and how their
interactions drive (or inhibit) agricultural functionality. These integrative
and interactionist principles will be vital for the repair of the agricultural
microbiome 37,38. The shift towards the term soil health and away from terms

like soil fertility or soil quality reflects this holistic scientific mindset39 and
should be expanded to describe the repair of the agricultural microbiome
more generally.

Owing to the complexity and variability of the microbiome, particu-
larly in agricultural soils, there is growing recognition that the same inter-
vention is liable to lead to very different outcomes in different contexts40. As
a result, the microbiomes of different soils, animals, and plants all need
different things to be repaired well 4,41. While insights into very specific
microbes are helping to produce generic and scalable inputs like biopesti-
cides and biofertilizers42, the repair of the microbiome also necessitates
greater attention to site-specific needs. Advances in metagenomics, which
allow functional assessment of microbes that exist in vivo agroecosystems,
rather than just those that can be grown and experimented on in vitro lab
settings, are helping to fulfil these site-specific research demands43.

The contextual insights generated through in vivo research (done, for
example, in the fields where the science will be applied) will best enable
microbial repair if they can be deployed in conjunction with tailored agri-
cultural extension services and within peer-to-peer learning networks of
local farmers44. These approaches to co-producing microbiological knowl-
edge can help ground research in local contexts and democratize its
implementation by working alongside farmers, land managers, vets, and
other practitioner scientists45. Experiences and insights46, particularly from
projects based in Latin and South America47, help demonstrate how space
can be carved out for the creation, valorization, protection, and potential
dissemination of Indigenous and other non-Western approaches to agri-
cultural management.

Just repair
Existing research into the agricultural microbiome has largely focused on
the relationships between the agriculture and human healthc1, on
microbially-informed practices for reducing the food system impacts
on biophysical systems11, and on the microbes needed to help agriculture
feed a growing world population48. Such research is crucial and is needed to
realize the repair of the agricultural microbiome and also to encourage food
system actors to pay greater attention to how the microbiome might be
reimagined to allow for a fairer and more equitable food system. Microbial
repair should encompass more than just the attainment of environmentally
efficient andhealthy food production systems. It should be understood in its
broader historical, political and economic contexts. These broken aspects of
the food system can, in other words, be repaired through the agricultural
microbiome.

We need to ensure, for example, that the technologies being developed
to modulate the agricultural microbiome are available to a large number of
practitioners, including those poorer farmers in the poorer parts of the
world usually excluded fromaccess to capital, to fairmarket relations, and to
new agricultural technologies49. Particularly given the highly uneven bur-
dens of agricultural production, repair is not just the repair of the micro-
biome, but of the highly uneven ways that the world’s farmers share the
responsibilities, benefits, and harms of agricultural production. It is helpful
that the word repair shares common etymological roots with the term
reparations. Reparations, like those being called for in relation to biodi-
versity loss, climate change, and colonialism50 demand engagement with
environmental histories, and how the past continues to haunt the present.
While these diverse social and political concerns represent an extra set of
considerations to be made in the design and delivery of relevant interven-
tions (economic, policy, technological), they need to be—and already are
being51—addressed to ensure that microbial fixes do not reproduce a set of
unjust food system outcomes.

In the case of agriculture and themicrobiome, repair needs to confront
how histories of colonialism and industrialization shape the uneven
environmental and health burdens generated by the modern food system,
which are largely borne by poorer and other underserved communities52.
While research into Indigenous agroecological microbiomes may lead to
valuable insights into the cultivars, soils, breeds, feedstuffs, and soil additives
needed for a sustainable food system, they also risk biopiracy and the (re)
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creation of neocolonial relations in the food system53. Projects formicrobial
repair could learn from the growing discussion of the need for regulations to
ensure that bioprospecting forays into agricultural settings in the Global
South resist extractive neo-colonial logics and work instead towards goals
such as food sovereignty and global economic justice54.

Past research identifies persistent problems with the type of ‘technofix’
solutions55 proposed for the repair of the microbiome. A holistic and just
program of repair through the microbiome must be attentive to the hidden
costs andpolitical agendasof the solutionsbeingofferedbydifferent actors in
the food system. Like agroecology56, repair is thus a political movement,
every bit as it is an environmental and scientific project. For this reason, we
call on researchers and scientists to extend long-standing discussions about
the development of globally even environmental and labor protections to the
new agriculturalmicrobiome frontier; towork towards global trade relations
that are attentive to the microbial consequences of agricultural production,
and to ensure equitable access to new agricultural microbial technologies.

The future of repair
Thinking with microbes makes manifest the entanglements of human,
animal and plant bodies, connected through the promiscuous traffic in
microbial organisms. It demonstrates the tight coupling of agroecological
and human futures57 and points to themicrobial origins of quality food and
to a wide array of plant and animal diseases. It suggests that:
• Approaches to food system governance must be recalibrated to

acknowledge the pathological consequences of bothmissingmicrobes,
as well as of excessive presence.

• More integrative research is needed to understand how microbes
contribute to agricultural system functionality.

• Newontologies, epistemologies, policies andpractical interventions are
needed to secure the microbial foundations of our food system.

• Attention needs to be paid to the political drivers and justice outcomes
of microbial dysbiosis and repair.

• The repair of the agricultural microbiomemust be attentive to how the
social injustices of the food system can be repaired through the
microbiome.

Data Availability
No datasets were generated or analysed during the current study.
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