
Kirk-Othmer Encyclopedia of Chemical Technology.
Copyright c© John Wiley & Sons, Inc. All rights reserved.

ATMOSPHERIC MODELING

ematical air quality models provide a powerful framework for understanding the dynamics of pollutants in
the atmosphere and for assessing the impact emission sources have on pollutant concentrations. Two classes
of models are commonly used. Empirical models provide an understanding of source impacts by statistically
analyzing historical air quality data. Diagnostic models provide a comprehensive description of the detailed
physics and chemistry of compounds in the atmosphere, following the evolution of pollutant emissions to their
ultimate fate. At the heart of the model is a system of mathematical routines that integrate the effects of
individual processes. The complexity and computational intensity of modern models have necessitated the
development of algorithms for fast and accurate mathematical solution techniques. Air quality models are
being applied to solving such problems as urban smog, acid deposition, regional ozone, haze in scenic regions,
and the destruction of the protective stratospheric ozone layer.

Mathematical models have grown increasingly detailed in descriptions of air pollutant dynamics and are
thus key tools for gaining scientific understanding of atmospheric processes. These models also are the most
practical and scientifically defensible means of relating pollutant emissions to air quality. They are widely used
in regulatory planning and analysis as indicated in Figure 1. A wide variety of models are used to address
problems ranging from indoor air pollution to regional acid deposition and global climate change. The models
used are remarkably similar. This article focuses on the models used to understand air pollution dynamics.

Development of a mathematical air quality model proceeds through four stages. In the conceptual stage,
a working set of relationships approximating the physical system is derived. Next, these relationships are
expressed as mathematical equations, giving a formal description of the idealized system. The third step is
the computational implementation of the model, including development of the algorithms and computer code
needed to solve the equations given various inputs. The final step is the application of the model, including
acquisition and processing of the necessary input data, and evaluation of model results.

1. Air Pollutants

Air pollution (qv) problems are characterized by their scale and the types of pollutants involved. Pollutants are
classified as being either primary, that is emitted directly, or secondary, ie, formed in the atmosphere through
chemical or physical processes. Examples of primary pollutants are carbon monoxide [630-08-0] (qv), CO, lead
[7439-92-1] (qv), Pb, chlorofluorocarbons, and many toxic compounds. Notable secondary pollutants include
ozone [10028-15-6] (qv), O3, which is formed in the troposphere by reactions of nitrogen oxides (NOx) and
reactive organic gases (ROG), and sulfuric and nitric acids.

Models are used extensively to understand a wide range of problems, including indoor air pollution,
such as elevated levels of radon [10043-92-2], Rn, and formaldehyde [50-00-0], CH2O, high concentrations of
carbon monoxide and particulate matter in the vicinity of congested roadway intersections, spills of volatile
toxic chemicals, urban smog, acid deposition, global climate change, and stratospheric ozone depletion. Each of
these problems involves pollutant transport via advection and turbulent diffusion. Several of them also involve
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Fig. 1. Schematic of the role of an air quality model, in the air quality control planning process. Some studies, for example,
the prediction of indoor air pollutant concentrations, require more than one model.

atmospheric chemistry and processes of wet or dry deposition may also be important. Thus the models used to
describe the dynamics in each case primarily vary in temporal and spatial resolution, the chemical transfor-
mations being tracked, and the deposition processes included. If a pollutant is strictly primary in nature and is
long-lived in the atmosphere, the models used to describe its dynamics need only follow transport. Transport-
only models are used when dealing with carbon monoxide, many toxic chemicals, and most components of
particulate matter. Following the evolution of secondary or highly reactive pollutants is generally much more
complicated because chemical reactions between many compounds must be considered in addition to transport
and removal. Chemically active systems include urban and regional smog, acid deposition, and stratospheric
ozone depletion.

2. Air Quality Models

Models used in air pollution analysis fall into two classes: empirical–statistical and deterministic as shown in
Figure 2. In the former, the model statistically relates observed air quality data to the accompanying emission
patterns, and chemistry and meteorology are included only implicitly. In the latter, analytical or numerical
expressions describe the complex transport and chemical processes that affect air pollutants. Pollutant con-
centrations are determined as explicit functions of meteorology, topography, chemical transformation, surface
deposition, and source characteristics. A typical schematic is shown in Figure 3. A listing of many of the
air quality models, including status, applications, and the model formulations can be found in ref. 2. Each
formulation involves approximations and has certain strengths and limitations.
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Fig. 2. Inputs, types of models, and outputs used in air quality modeling studies.

3. Empirical–Statistical Models

Empirical–statistical models are based on establishing a relationship between historically observed air quality
and the corresponding emissions. The linear rollback model is simple to use and requires few data, and for these
reasons has been widely applied (3, 4). Linear rollback models assume that the highest measured pollutant
concentration is proportional to the basinwide emission rate, plus the background value; that is,

cmax = aE + cb (1)

where cmax is the maximum measured pollutant concentration, E is the emission rate, cb is the background
concentration resulting from sources outside the modeling region, and a is a constant of proportionality. The
constant implicitly accounts for the dispersion, transport, deposition, and chemical reactions of the pollutant.
The allowable emission rate Ea necessary to reach a desired ambient air quality goal cd can be calculated from

Ea

Eo
=

cd − cb

cmax − cb
(2)

where Eo is the emission rate that prevailed at the time that cmax was observed. Presumably, pollutant concen-
trations at other times decrease toward background levels as emissions are reduced. The linear rollback model
is a very simplified approach and its application is limited. Nonlinear processes, such as chemical reactions
and spatial or temporal changes in emission patterns, are not accounted for in the rollback model.

A second class of empirical–statistical models is the receptor-oriented model, which has been used exten-
sively for estimating the contributions that distinguishable sources such as automobiles or municipal inciner-
ators make to particulate matter concentrations (5–14). Attempts have also been made to track nonreacting
gases (15), and under special conditions, reactive organic compounds (16–18), to their sources using receptor
modeling methods. Receptor models compare the measured chemical composition of particulate matter at a
receptor site to the chemical composition of emissions from the primary sources to identify the source con-
tributions at the monitoring location. There are three principal categories of receptor models: chemical mass
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Fig. 3. Schematic diagram of a deterministic air quality model, showing the model components and interactions (1) where
each of the boxes involves a large number of individual processes. Terms are defined in text.

balance, multivariate, and microscopic. Hybrid analytical and receptor (or combined source–receptor) models
have been used (19), but further investigation into their capabilities is required.

Receptor models are powerful tools for source apportionment of particulates because a vast amount of
particulate species characterization data have been collected at many sampling sites worldwide, and because
many aerosol species are primary pollutants. Most of the information available is for elemental concentrations,
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eg, lead, nickel, and aluminum, although more recent measurements have provided data on concentrations of
ionic species and carbonaceous compounds. At a sampling (or receptor) site, the aerosol mass concentration of
each species i is

ci =
n∑

j=1

aij Sj i = 1, 2, . . .m (3)

where ci is the mass concentration of species i at the receptor site; Sj is the total mass concentration of all
species at the receptor site that is attributable to source j; aij is the fraction that species i constitutes of the
total mass concentration arriving at the sampling site from source j; m is the total number of species measured;
and n is the total number of sources. The mass concentration at the receptor site and the coefficients aij that
describe the chemical composition for the sources are the inputs from which Sj, the mass apportioned to source
j, is determined. Because aij characterizes the source, it is referred to as the source fingerprint and should be
unique to the source. When the chemical compositions of the emissions from two source categories are similar, it
is extremely difficult for receptor models to distinguish between the sources. The categories of receptor models
are differentiated by the techniques used to determine Sj.

If the source fingerprints, aij, for each of n sources are known and the number of sources is less than or
equal to the number of measured species (n ≤ m), an estimate for the solution to the system of equations (3) can
be obtained. If m > n , then the set of equations is overdetermined, and least-squares or linear programming
techniques are used to solve for Sj. This is the basis of the chemical mass balance (CMB) method (20, 21).
If each source emits a particular species unique to it, then a very simple tracer technique can be used (5).
Examples of commonly used tracers are lead and bromine from mobile sources, nickel from fuel oil, and sodium
from sea salt. The condition that each source have a unique tracer species is not often met in practice.

Microscopic identification models are similar to the CMB methods except that additional information is
used to distinguish the source of the aerosol. Such chemical or morphological data include particle size and
individual particle composition and are often obtained by electron or optical microscopy.

Multivariate models, including factor analysis models (14, 22–24), rely on finding the underlying structure
of large sets of air quality data in order to determine sources. Models based on factor analysis are the most
widely used. Multivariate models operate by identifying groups of elements or species, the concentrations of
which fluctuate together from sampling period to sampling period, implying that these groups come from a
single “source”. When the composition of the hypothetical source is compared to the known composition of
specific sources, it often becomes obvious what the group of cofluctuating chemical elements represents. For
example, lead and bromine concentrations are usually highly correlated because they are emitted primarily by
the same sources, ie, automobiles burning leaded gasoline. Multivariate techniques do not rely on a detailed
knowledge of the source fingerprint aij and can be used to refine estimates of the fingerprint.

4. Deterministic Models

Deterministic air quality models describe in a fundamental manner the individual processes that affect the
evolution of pollutant concentrations. These models are based on solving the atmospheric diffusion–reaction
equation, which is in essence the conservation-of-mass principle for each pollutant species (25):

δci

δt
+ U·∇ci = ∇·Di∇ci + Ri(c1, c2, c3, . . .cn)

+Si(x, t) i = 1, 2, 3, . . .n (4)
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where ci is the concentration of species i;U is the wind velocity vector; Di is the molecular diffusivity of species
i; Ri is the net production (depletion if negative) of species i by chemical reaction; Si is the emission rate of i;
and n is the number of species. R can also be a function of the meteorological variables. Equation 4 states that
the time rate of change of a pollutant depends on convective transport (term 2), diffusion (term 3), chemical
reactions (term 4), and emissions (term 5), together with initial and boundary conditions. Deposition and
surface level emissions enter as boundary conditions at the ground:

E − vdc = −Kzz
δc
δz

where E is the ground level emissions, vd is the deposition velocity, and Kzz is the vertical diffusivity. The
turbulence closure problem makes it necessary to approximate the atmospheric diffusion equation, usually by
K-theory (26, 27):

δci

δt
+ 〈U〉·∇〈ci〉 = ∇·K∇〈ci〉 + Ri(〈ci〉, 〈c2〉, . . .〈cn〉) + 〈Si(x, t)〉

i = 1, 2, 3, . . .n (5)

where the braces 〈 〉 indicate an ensemble average, and K is the turbulent (eddy) diffusivity tensor. Known
analytical solutions exist only for the simplest source distributions and chemical reaction mechanisms, 〈Si〉 R,
in equation 5.

Examination of equation 5 shows that if there are no chemical reactions, (R = 0), or if R is linear in 〈ci〉
and uncoupled, then a set of linear, uncoupled differential equations are formed for determining pollutant
concentrations. This is the basis of transport models which may be transport only or transport with linear
chemistry. Transport models are suitable for studying the effects of sources of CO and primary particulates on
air quality, but not for studying reactive pollutants such as O3, NO2, HNO3, and secondary organic species.

4.0.1. Lagrangian Models

There are two distinct reference frames from which to view pollutant dynamics. The most natural is the
Eulerian coordinate system which is fixed at the earth’s surface and in which a succession of different air
parcels are viewed as being carried by the wind past a stationary observer. The second is the Lagrangian
reference frame which moves with the flow of air, in effect maintaining the observer in contact with the same
air parcel over extended periods of time. Because pollutants are carried by the wind, it is often convenient to
follow pollutant evolution in a Lagrangian reference frame, and this perspective forms the basis of Lagrangian
trajectory and Lagrangian marked-particle or particle-in-cell models. In a Lagrangian marked-particle model,
the center of mass of parcels of emissions are followed, traveling at the local wind velocity, while diffusion
about that center of mass is simulated by an additional random translation corresponding to the atmospheric
diffusion rate (28, 29).

Lagrangian trajectory models can be viewed as following a column of air as it is advected in the air basin
at the local wind velocity. Simultaneously, the model describes the vertical diffusion of pollutants, deposition,
and emissions into the air parcel as shown in Figure 4. The underlying equation being solved is a simplification
of equation 5:

δci

δt
=

δ

δz
Kzz

δci

δz
+ Si(t) + R(c, t) (6)

Trajectory models require spatially and temporally resolved wind fields, mixing-height fields, deposition pa-
rameters, and data on the spatial distribution of emissions. Lagrangian trajectory models assume that vertical
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Fig. 4. Schematic diagram of a Lagrangian trajectory model where H(t) represents the air column height in both Eulerian
(x,y,z) and Lagrangian (ξ, η, z) coordinates; c, the pollutant concentration; R, chemical reactions; vg, deposition of pollutants;
and Kzz, vertical diffusion. (a) The column of air being modeled is advected at the local wind velocity along a trajectory path
across the modeling region; zi(t) represents the mixing height variation along the trajectory path; Ei, the emissions of the
ith pollutant. Within the moving air parcel, the model describes the important processes affecting the pollutant evolution
and concentration. (b) Vertical resolution is gained by dividing the column into a number of cells in the vertical direction;
R(ci) represents the concentration produced by chemical reactions within the ith cell of which �zi is the height.

wind shear and horizontal diffusion are negligible. Other limitations of trajectory and Eulerian models have
been discussed (30).

4.0.2. Gaussian Plume Model

One of the most basic and widely used transport models based on equation 5 is the Gaussian plume model.
Gaussian plume models for continuous sources can be obtained from statistical arguments or can be derived
by solving:

U
δc
δx

= Kyy
δ2c
δy2 + Kzz

δ2c
δz2 (7)

where U is the temporally and vertically averaged wind velocity; x, y, and z are the distances in the downwind,
crosswind, and vertical directions, respectively; and Kyy and Kzz are the horizontal and vertical turbulent diffu-
sivities, respectively. For a source with an effective height H, emission rate Q, and a reflecting (nonabsorbing)
boundary at the ground, the solution is

c(x, y, z) =
Q

2πUσy(x)σz(x)
exp

[ −y2

2σ2
y (x)

] [
exp

−(z − H)2

2σ2
z (x)

+ exp
−(z + H)2

2σ2
z (x)

]

This solution describes a plume with a Gaussian distribution of pollutant concentrations, such as that in Figure
5, where σz(x) and σz(x) are the standard deviations of the mean concentration in the y and z directions. The
standard deviations are the directional diffusion parameters, and are assumed to be related simply to the
turbulent diffusivities, Kyy and Kzz. In practice, σy(x) and σz(x) are functions of x, U , and atmospheric stability
(2, 31–33).

Gaussian plume models are easy to use and require relatively few input data. Multiple sources are treated
by superimposing the calculated contributions of individual sources. It is possible to include the first-order
chemical decay of pollutant species within the Gaussian plume framework. For chemically, meteorologically, or
geographically complex situations, however, the Gaussian plume model fails to provide an acceptable solution.



8 ATMOSPHERIC MODELING

Fig. 5. Diffusion of pollutants from a point source. Pollutant concentrations have separate Gaussian distributions in both
the horizontal (y) and vertical (z) directions. The spread is parameterized by the standard deviations (σ) which are related
to the diffusivity (K).

4.0.3. Eulerian Models

Of the Eulerian models, the box model is the easiest to conceptualize. The atmosphere over the modeling
region is envisioned as a well-mixed box, and the evolution of pollutants in the box is calculated following
conservation-of-mass principles including emissions, deposition, chemical reactions, and atmospheric mixing.

Eulerian “grid” air quality models are the most complex, but potentially the most powerful, involving
the least-restrictive assumptions. They are also the most computationally intensive. Grid models solve a
finite approximation to equation 5, including temporal and spatial variation of the meteorological parameters,
emission sources, and surface characteristics. Grid models divide the modeling region into a large number
of cells, horizontally and vertically, which interact with each other by simulating diffusion, advection, and
sedimentation (for particles) of pollutant species. Input data requirements for grid models are similar to those
for Lagrangian trajectory models, but, in addition, data on background concentrations (boundary conditions)
at the edges of the grid system are required. Eulerian grid models predict pollutant concentrations throughout
the entire airshed. Over successive time periods the evolution of pollutant concentrations and how they are
affected by transport and chemical reaction can be tracked.

4.0.4. Modeling Chemically Reactive Compounds

A number of compounds are formed or destroyed in the atmosphere by a series of complex, nonlinear chemical
reactions, eg, stratospheric ozone. Models that not only describe pollutant transport, but also account for
complex chemical transformations, R(c ,t) in equation 5, are necessary for these systems. Such models are also
required to study the dynamics of chemically reactive primary pollutants such as nitric oxide [10102-43-9],
NO, and pollutants that are primary as well as secondary in origin, for example, nitrogen dioxide [10102-44-0],
NO2, and formaldehyde. Addition of the capability to describe a series of interconnected chemical reactions
greatly increases requirements for computer storage as well as computing time and input data requirements.
Increased computational demands arise because the evolution of the interacting species must be followed
simultaneously, leading to a system of coupled, nonlinear differential equations.
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Box, Lagrangian trajectory, and Eulerian grid models have all been developed to include nonlinear chem-
ical reactions. Box models assume that the pollutants are mixed homogeneously within the modeling region,
an assumption that is often inappropriate. Trajectory and grid models resolve pollutant dynamics spatially
and have been used widely and with success particularly for studying photochemical smog and acid deposition
problems (26, 34–45).

4.1. Temporal and Spatial Resolution

The temporal and spatial resolutions of models can vary from minutes to a year and from meters to hundreds
of kilometers. The minimum meaningful resolution of a model is determined by the input data resolution
and the structure of the model. Statistical models generally rely on several years’ worth of measurements of
hourly or daily pollutant concentrations. The resolution of the input data represents the minimum resolution
of a statistical model. Resolution of analytical models is limited by the spatial and temporal resolution of
the emissions inventory, the meteorological fields, and the grid size chosen for model implementation. For
modeling urban air basins, the size of individual grid cells is on the order of a few kilometers per side, whereas
for modeling street canyons, the cell size must be reduced to a few meters on each edge. At the other extreme,
regional models have horizontal resolutions varying from 20 to 100 km, and global models may have a resolution
as coarse as a few thousand km. The temporal resolution of models ranges from about 15 minutes to a few
hours or days.

The information desired from modeling studies often depends on processes that occur on spatial scales
much smaller than the resolution of most air quality models. The modeling of NOx air quality in street canyons
involves small-scale processes of this sort. Introduction of point-source emissions into grid-based air quality
models likewise involves a mismatch between the high concentrations that exist near the source versus the
lower concentrations computed by a model that immediately mixes those emissions throughout a grid cell
of several kilometers on each side. Because of computational time constraints, it has often been considered
impractical to describe fully the processes that take place on a scale smaller than the main model grid, ie,
subgrid scale. Nevertheless, values obtained from large-scale calculations should be accurate over the spatial
averaging scale adopted by the model.

5. Model Components

A model’s ability to correctly predict pollutant dynamics and to apportion source contributions depends on
the accuracy of the individual process descriptions and input data, and the fidelity with which the framework
reflects the interactions of the processes.

5.1. Turbulent Transport and Diffusion

There are two pollutant transport terms in equation 5: an advection term, in which pollutants are carried
along with the time-averaged mean wind flow; and a dispersion term representing transport resulting from
local turbulence. The averaging time that determines the mean winds is related to the spatial scale of the
system being modeled. Minutes may be appropriate for urban-scale simulations, multihour averages for the
regional scale, and daily to weekly averages for determining long-term concentrations of nonreactive pollutants.

Turbulent transport is determined by complex interactions between meteorological conditions and topog-
raphy. In addition to gross topographical features, surface “roughness” scales have been devised to parameterize
surface characteristics according to land-use categories. Very small values, are assigned to smooth water or
ice, and increasingly higher values to grasslands, croplands, residential areas, and urban-industrial centers.
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In general, the rougher the surface, the greater the local turbulence. Often, particularly during sunny days,
atmospheric turbulence is generated by the heating of the earth’s surface.

Turbulent fluxes are difficult to measure, and hence there are uncertainties in the various methods
employed by models to describe them. As in equation 5, these fluxes are typically parameterized as being
proportional to the gradient of mean pollutant concentrations. Further simplifying the problem, the components
of the eddy diffusivity tensor, K, are assumed to be constant along their respective axes. An obvious need when
applying K-theory is some algorithm for establishing the value of K. As a result of the large variety of processes
involved, there are also a number of methods to parameterize the horizontal and vertical diffusion coefficients
(46). The usual limitation to the accuracy of diffusion calculations in a practical application is determined by
the extent of measurements of the atmospheric structure taken during the period to be simulated. For most
model applications, the number of observed factors relating to atmospheric turbulence are few and include only
ground-level winds and temperatures, surface roughness, and cloud cover. At a few locations and times, the
inversion base, or mixing height, wind speeds aloft, and vertical temperature gradient may also be known. As
the amount and accuracy of information characterizing atmospheric structure increases, confidence in model
predictions of dispersion increases.

5.2. Removal Processes

Pollutant removal processes, particularly dry deposition and scavenging by rain and clouds, are a primary
factor in determining the dynamics and ultimate fate of pollutants in the atmosphere.

5.2.1. Dry Deposition

Dry deposition occurs in two steps: the transport of pollutants to the earth’s surface, and the physical and
chemical interaction between the surface and the pollutant. The first is a fluid mechanical process (see Fluid
mechanics), the second is primarily a chemical process, and neither is completely characterized at the present
time. The problem is confounded by the interaction between the pollutants and biogenic surfaces where pol-
lutant uptake is enhanced or retarded by plant activity that varies with time (47, 48). It is very difficult
to measure the depositional flux of pollutants from the atmosphere, though significant advances were made
during the 1980s and early 1990s (49, 50).

Many factors affect dry deposition, but for computational convenience air quality models resort to using
a single quantity called the deposition velocity, designated vd or vg, to prescribe the deposition rate. The
deposition velocity is defined such that the flux Fi of species i to the ground is

Fi = vdci(zr) (9)

where ci(zr) is the concentration of species i at some reference height zr, typically from one to several meters.
For a number of pollutants, vd has been measured under various meteorological conditions and for a number
of surface types (50).

Early models used a value for vd that remained constant throughout the day. However, measurements
show that the deposition velocity increases during the day as surface heating increases atmospheric turbulence
and hence diffusion, and plant stomatal activity increases (50–52). More recent models take this variation of
vd into account. In one approach, the first step is to estimate the upper limit for υd in terms of the transport
processes alone. This value is then modified to account for surface interaction, because the earth’s surface is
not a perfect sink for all pollutants. This method has led to what is referred to as the resistance model (52, 53)
that represents vd as the analogue of an electrical conductance

vd = (ra + rb + rs)
−1 (10)
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where ra is the aerodynamic resistance controlled primarily by atmospheric turbulence, rb is the resistance to
transport in the fluid sublayer very near the plant surface, and rs is the surface (or canopy) resistance. Of the
three resistances, ra is essentially the same for all species, rb is the same for gaseous species with the same
diffusivities, though it can be considerably greater for aerosols, and rs depends greatly on the surface affinity
for the diffusing species. For example, nitric acid [7697-37-2], HNO3, which reacts rapidly with most surfaces,
has a very low surface resistance, usually taken as zero (49, 54, 55), whereas CO is not very reactive and has
a high rs value. Significant differences between the deposition of gases and aerosols are that aerosols have a
much lower diffusivity, the rate of gravitational settling can be significant for larger particles, and the surface
resistance for aerosols is not determined by species reactivity, alone. Recent models account for the variation of
surface resistance and diurnal change in fluid mechanical transport. These parameterizations have been used
to quantify the deposition flux of various compounds (49, 56).

5.2.2. Scavenging by Rain, Fog, and Clouds

Wet removal, or precipitation scavenging, can be effective in cleansing the atmosphere of pollutants, and
depends on the intensity and size of the raindrops (57). Fog and cloud droplets can also absorb gases, capture
particles, and promote chemical reactions. Precipitation scavenging is not as important on an urban scale as
on a regional scale and is not included in most urban-scale models. Fog chemistry can be important to human
health on an urban scale, as evidenced in London in 1952 when thousands of persons died during an episode of
excess industrial air pollution and fog (27). Cloud, rain, and fog processes are often important in regional and
global scale modeling.

5.2.3. Representation of Atmospheric Chemistry Through Chemical Mechanisms

A complete description of atmospheric chemistry within an air quality model would require tracking the
kinetics of many hundreds of compounds through thousands of chemical reactions. Fortunately, in modeling
the dynamics of reactive compounds such as peroxyacetyl nitrate [2278-22-0] (PAN), C2H3NO5, O3, and NO2,
it is not necessary to follow every compound. Instead, a compact representation of the atmospheric chemistry
is used. Chemical mechanisms represent a compromise between an exhaustive description of the chemistry
and computational tractability. The level of chemical detail is balanced against computational time, which
increases as the number of species and reactions increases. Instead of the hundreds of species present in the
atmosphere, chemical mechanisms include on the order of 50 species and 100 reactions.

Three different types of chemical mechanisms have evolved as attempts to simplify organic atmospheric
chemistry: surrogate (58, 59), lumped (60–63), and carbon bond (64–66). These mechanisms were developed
primarily to study the formation of O3 and NO2 in photochemical smog, but can be extended to compute the
concentrations of other pollutants, such as those leading to acid deposition (40, 42).

Surrogate mechanisms use the chemistry of one or two compounds in each class of organics to represent
the chemistry of all the species in that class. For example, the explicit chemistry of butane [106-97-8], C4H10,
might be used to describe the chemistry of the alkanes.

Lumped mechanisms are based on the grouping of chemical compounds into classes of similar structure
and reactivity. For example, all alkanes might be lumped into a single class, the reaction rates and products
of which are based on a weighted average of the properties of all the alkanes present. For example, as shown
in Table 1, the various alkanes, CH2n+2 , react with OH in a similar manner to form alkyl radicals, CnH2n+1.
When expressed explicitly, over 30 species and 20 reactions are involved. By lumping, the series of reactions
can be reduced to one, and the number of required organic compounds is reduced to two. Thus lumping yields
a tremendous savings in computational time, yet maintains the necessary chemical detail.

The carbon bond mechanism (64–66), a variation of a lumped mechanism, splits each organic molecule
into functional groups using the assumption that the reactivity of the molecule is dominated by the chemistry
of each functional group.
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Table 1. Alkane–Hydroxide Radical Reactions

Explicit reactions

C2H6 + OH −→ C2H5̇ + H2O
C3H8 + OH −→ C3H7̇ + H2O

.

...

CnH2n+2 + OH −→ CnH2̇n+1 + H2O




initial reaction
with OH

C2H5̇ + O2 −→ C2H5O2̇
C3H7̇ + O2 −→ C3H7O2̇

.

...

CnH2̇n+1 + O2 −→ CnH2̇n+1O2̇




alkyl radical
oxidation reaction

Lumped representation
alkane + OH −→ RO2̇

5.3. Aerosol Dynamics

Inclusion of a description of aerosol dynamics within air quality models is of primary importance because
of the health effects associated with fine particles in the atmosphere, visibility deterioration, and the acid
deposition problem. Aerosol dynamics differ markedly from gaseous pollutant dynamics in that particles
come in a continuous distribution of sizes and can coagulate, evaporate, grow in size by condensation, be
formed by nucleation, or be deposited by sedimentation. Furthermore, the species mass concentration alone
does not fully characterize the aerosol. The particle size distribution, which changes as a function of time,
and size-dependent composition determine the fate of particulate air pollutants and their environmental and
health effects. Particles of about 1 µm in diameter or smaller penetrate the lung most deeply and represent a
substantial fraction of the total aerosol mass as shown in Figure 6. The origin of these fine particles is difficult
to identify because much of the fine particle mass is formed by gas-phase reaction and condensation in the
atmosphere.

Simulation of aerosol processes within an air quality model begins with the fundamental equation of
aerosol dynamics which describes aerosol transport (term 2), growth (term 3), coagulation (terms 4 and 5), and
sedimentation (term 6):

δn
δt

+ ∇·Un +
δI
δv

=
1
2

∫ v

0
β(v, v − v)n(v)n(v − v) dv

−
∫ ∞

0
β(v, v)n(v)n(v) dv − ∇·Cn (11)

where n is the particle size distribution function; U is the fluid velocity; I is the droplet current that describes
particle growth and nucleation resulting from gas-to-particle conversion; v is the particle volume; β is the rate
of particle coagulation; and C is the sedimentation velocity. Modeling the formation and growth of aerosols is
done by sectioning the size distribution n into discrete ranges. Then the size and chemical composition of an
aerosol is followed as it evolves by condensation, coagulation, sedimentation, and nucleation.

5.3.1. Air Quality Model Inputs

Inputs to analytical air quality models can be broadly grouped as those dealing with meteorology, emissions,
topography, and atmospheric concentrations. Meteorological inputs generally control the transport rate of
pollutants and are used to determine reaction rates and the depositional flux of compounds. Topography
influences transport and deposition. Observed compound concentrations are used to specify both initial and
boundary conditions for model simulations. Especially for pollution problems involving organic compounds,
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Fig. 6. Size distribution of an urban aerosol showing the three modes containing much of the aerosol mass. The fine mode
contains particles produced by condensation of low volatility gases. The mid-range, or accumulation mode, results from
coagulation of smaller aerosols and condensation of gases on preexisting particles. Coarse particulates, the largest aerosols,
are usually generated mechanically.

emissions are a key input subject to considerable uncertainty. Although emissions from primary industrial
facilities or utilities may be reasonably well known, emissions from residential or commercial facilities, mobile
sources, and natural sources are often roughly estimated and difficult to verify.

The data requirements for applying models differ greatly among model types. For a Gaussian plume model,
the required data could include as little as the mean wind velocity, source emission rate, atmospheric stability
(and hence diffusivity), effective source height and air quality data for comparison with model predictions
(67). At the other extreme, a large grid model that incorporates chemical kinetics requires considerably more
information. Ideally a comprehensive model evaluation study would incorporate spatially and temporally
resolved meteorological data, eg, winds, temperature, and solar insolation, temporally varying emissions for
every species in each cell of the modeling region, topographical data, eg, land use and elevation, initial species
concentrations, boundary conditions for each species, and concentration data for comparison against model
predictions (44).

5.3.2. Meteorological Inputs

Meteorological conditions determine how fast and to where pollutants are dispersed, rates of chemical reactions,
and losses resulting from deposition. Inputs vary depending on the type of model being applied. Simpler models,
eg, Gaussian plume models with no chemical reactions, may require only a single wind velocity and cloud
cover. On the other hand, a complex, three-dimensional, chemically active model requires hourly vertically and
horizontally resolved wind fields, as well as hourly temperature, humidity, mixing depth, and solar insolation
fields. The spatial and temporal resolution of the meteorological inputs must match the resolution of the air
quality model. Much of the time the necessary inputs are determined directly from observations and relatively
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little mathematical modeling is used. In other cases, it is necessary to interpolate relatively sparse observations
over a modeling domain using objective analysis techniques. Because of the sparseness of the data, newer air
quality model applications have used dynamic, or prognostic, meteorological models. Use of dynamic models
based on fundamental equations is intended to improve the accuracy of the meteorological inputs over the
modeling domain.

Objective analysis techniques use a prescribed method with observations collected at a few discrete
locations and times to calculate meteorological variables over the modeling domain. Usually this involves
two- and three-dimensional spatial interpolation, and does not involve solving for any time dependency of the
flow. Particular care must be taken in developing wind fields from sparse data because the wind field should
be mass consistent. Objective analysis, including diagnostic procedures, is used to reduce the divergence of
interpolated wind fields and account for some topographical features (68–71). A field of input values generated
by interpolation over a large geographic area from sparse data is intrinsically uncertain and leads to uncertainty
in model predictions. Upper-level variables such as temperature structure (mixing depths) and wind fields are
particularly susceptible to this uncertainty, and have led to the wider use of dynamic models.

Dynamic meteorological models, much like air pollution models, strive to describe the physics and ther-
modynamics of atmospheric motions as accurately as is feasible. Besides being used in conjunction with air
quality models, they are also used for weather forecasting. Like air quality models, dynamic meteorological
models solve a set of partial differential equations (also called primitive equations). This set of equations,
which are fundamental to the fluid mechanics of the atmosphere, are referred to as the Navier-Stokes equa-
tions, and describe the conservation of mass and momentum. They are combined with equations describing
energy conservation and thermodynamics in a moving fluid (72):

mass
∂ρ

∂t
+ ∇·ρU = 0 (12)

momentum
∂ρU
∂t

+ U·∇ρU = D∇2U + F − ∇P (13)

energy
∂ρe
∂t

+ ∇·(ρeU) = Q̇ − Ẇ (14)

thermodynamics
p
ρ

= RT (15)

where ρ is the local density of the atmosphere, U is the wind velocity vector, D is the molecular diffusivity, F
represents external forces such as gravity, p is pressure, e is the local internal energy of the atmosphere, and
Q· is the heat flux in and W· is the work done by, the fluid, friction. The last equation is the Ideal Gas Law.
Often it is also necessary to follow the transport of water, eg, for predicting clouds.

∂q
∂t

+ U·∇q = S (16)

where q is the water concentration and S is the source or sinks of water, including rainout, etc. These equations
form a set of coupled, nonlinear partial differential equations that are as formidable as those describing the
chemical and physical dynamics of trace pollutants.

Experience in the solution of these governing equations is extensive, primarily because they are used in
weather forecasting. This experience has led to useful simplifications and to the realization that the system is
very sensitive to initial conditions. The sensitivity to initial conditions leads to the temporal amplification of
any errors in the initial or boundary conditions, or of computational errors. The growth of these errors seriously
limits the period of time that can be simulated for use in air pollution studies unless a separate mechanism
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is used to dampen error growth. This same limitation makes longer range weather forecasts increasingly
uncertain. A method that has been developed to reduce the growth of errors arising from initial and boundary
conditions when reconstructing historical conditions is to use observations to adjust the solution back towards
the actual. This is referred to as “Newtonian nudging” or four-dimensional data assimilation (FDDA) (73).
In essence, the predicted solution from the dynamic model is averaged, using various weightings, and the
meteorological fields developed by objective analysis.

The equations governing air motion are generally assumed to be independent of those describing the
chemical pollutant dynamics. This is because for problems such as urban smog and acid deposition, pollutant
concentrations are so low that they do not significantly impact radiative transfer, and hence future weather.
This may not be the case for problems such as stratospheric ozone depletion, and is not true for global climate
change. In the latter case, the chemical evolution of the greenhouse gases, eg, carbon dioxide [124-38-9], CO2,
and chlorofluorocarbons (CFC), is currently assumed to be slow, and the pollutant distribution is found using
little or no description of the chemistry. The radiative forcing is then found using expected concentrations.

5.4. Mathematical and Computational Implementation

Solution of the complex systems of partial differential equations governing both the evolution of pollutant con-
centrations and meteorological variables, eg, winds, requires specialized mathematical techniques. Comparing
the two sets of equations governing pollutant dynamics (eq. 5) and meteorology (eqs. 12–14) shows that in both
cases they can be put in the form: ∂A

∂t
+ U·∇A = ∇·K∇A + S

response convective terms source
(17)

where A is the variable being modeled, eg, pollutant concentrations, wind velocities, temperature, and water
vapor, U is the wind velocity vector, K is the turbulent diffusivity, and S is a generalized source or sink,
eg, chemical production-destruction and emissions for modeling pollutant concentrations; pressure gradients,
gravity, and coriolis forces for momentum conservation; thermal heating for energy conservation; and evap-
oration for water vapor modeling. Equation 17 is the general transport equation, which can be complex and
nonlinear for most atmospheric systems. The nonlinearity and coupling arise as a result of the second and
fourth terms. Because the systems of equations used in pollutant dynamics and meteorological modeling have
the same general form, similar mathematical techniques are used to solve them.

The generalized transport equation, equation 17, can be dissected into terms describing bulk flow (term
2), turbulent diffusion (term 3) and other processes, eg, sources or chemical reactions (term 4), each having an
impact on the time evolution of the transported property. In many systems, such as urban smog, the processes
have very different time scales and can be viewed as being relatively independent over a short time period,
allowing the equation to be “split” into separate operators. This greatly shortens solution times (74). The
solution sequence is

∂A
∂t

∣∣∣∣
H

= −U·∇A + ∇·K∇A = LH (A) (18)

∂A
∂t

∣∣∣∣
V

= −W
∂A
∂z

+
∂

∂z
Kz

∂A
∂z

= LV (A) (19)

∂A
∂t

∣∣∣∣
S

= S = LS (A) (20)

∂A
∂t

∣∣∣∣
Total

= (LH + LV + LS)(A) (21)
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Fig. 7. Comparison of various transport schemes for advecting a cone-shaped puff in a rotating windfield after one
complete rotation: (a), the exact solution; (b), obtained by an accurate numerical technique; (c), the effect of numerical
diffusion where the peak height of the cone has been severely truncated; and (d), where the predicted concentration field
is very bumpy, showing the effects of artificial dispersion. In the case of (d), spurious waves are formed that impair the
predictions, though the peak height is better maintained.

where LH is the horizontal transport operator, LV is the vertical transport operator, and LS is the operator
describing other processes, such as chemistry. Modifications of the splitting process can be used to improve
accuracy and computational speed. Besides leading to smaller systems of coupled equations, splitting also
allows use of solution techniques that are designed to effectively describe specific processes. For example, in
a photochemical air quality model, one routine is used for horizontal transport resulting from bulk winds,
another for vertical motions, which are generally diffusive processes, and a third for the chemistry.

Historically, numerical schemes used to calculate the rate of transport have been based on finite differ-
ence and, more recently, finite element techniques. Spectral methods have also shown promise, but nonlinear
chemical effects tend to degrade solution accuracy in some tests (75, 76). A problem with solving the set of
equations is that the spatial discretization of the modeling region leads to artificial numerical dispersion, which
is manifested by the formation of spurious waves and by pollutant peaks being spread out. For example, Figure
7 shows how various proposed schemes perform when following the rotation of a cone-shaped pollutant puff. In
one instance, the original cone is virtually lost as a result of numerical errors. This remains a classic problem
in computational fluid mechanics.

Tracking the chemical dynamics, eg, R in the atmospheric diffusion equation (eq. 5) and S (in eq. 20), is
particularly difficult and time-consuming. This is because of the wide range of compound lifetimes, or more
specifically, the characteristic reaction times. Some species, such as the O atom, have atmospheric lifetimes
on the order of microseconds whereas others last for weeks. It is impractical to use a standard technique, eg,
Runga Kutta, having a time-step corresponding to the shortest-lived species. This would be both excessively
time-consuming and lead to the accumulation of numerical errors, making the computed solution invalid. Gear
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methods can be used, but are computationally slow. Instead, the chemical nature of the process is used to
motivate a solution procedure. For a compound experiencing chemical production and destruction, the species
concentration can be found using:

∂ci

∂t
= Si = Ai − Bici

where Ai is the production of species i from chemical reactivity and direct emissions, and Bici is the loss of i
from chemical reactivity and deposition. In general, Ai and Bi are time varying and depend on concentrations
of other compounds. As it turns out, even though species i might react very rapidly, Ai and Bi are rather
constant over periods of a minute or so. Thus an approximate analytical solution to the above equation is used.
Such techniques have been shown to be very accurate and an order of magnitude faster than others (74, 77).
However, solution of the chemical kinetics is still the most computationally intensive part of a chemically active
air quality model, consuming about 85% of the computer time.

Historically, the computational intensity of the more complex chemically active models have limited their
application. For example, modeling only the gas-phase dynamics over an area like Los Angeles requires solving
about 500,000 simultaneous, nonlinear equations. Until the late 1980s, computational power severely limited
the use of chemically active models, and particularly inhibited the development and use of regional oxidant
and acid deposition models. The rapid increase in computational power is making it possible to address much
larger problems, for example, regional and global scale pollution. One aspect of air quality models is that they
are highly parallelizable. The development of parallel computers should allow for significantly more detailed
modeling of large systems.

6. Application of Air Quality Models

Both receptor and analytical air quality models have proven to be powerful tools for understanding atmospheric
pollutant dynamics and for determining the impact of sources on air quality.

6.1. Receptor Models

Receptor models, by their formulation, are effective in determining the contributions of various sources to
particulate matter concentrations. In classic studies, sources contributing to airborne particle loadings have
been identified in Washington, D.C. (78), St. Louis (9, 24), Los Angeles (7, 12), Portland, Oregon (78), and
Boston (79–81), as well as other areas including the desert (82).

A receptor model (78) and a source-oriented deterministic model were combined as part of a particulate
air quality control strategy analysis in Portland, Oregon. Using CMB techniques, source contributions to the
ambient aerosol were identified and then dispersion modeling was used to confirm the source contributions. The
results obtained with the two models were compared, and a revised particulate emissions inventory was input
into the source-dispersion model. Finally, the revised emissions inventory was used in dispersion modeling of
emission control strategy alternatives. This approach utilized the strengths of both types of models. Receptor
models are suitable for predicting the outcome of perturbations in some sources but not others. They are,
however, good for determining the sources of particulate matter when an accurate emissions inventory is not
available. Disperson models, on the other hand, are well-suited for modeling the impact of a wide variety of
emissions changes that would result from changed emission control regulations, but rely totally on an input
emissions inventory, which may be uncertain or difficult to obtain.
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6.1.1. Analytical Modeling Studies

Analytical air quality models have been used the most in modeling the dynamics of pollutants at local and
urban scales. Nonreactive, mass conservation models based on solving equation 3, including Gaussian plume
models, have been used extensively for source apportionment, control strategy analysis, and source impact
modeling of nonreactive pollutants, such as CO, and of carbonaceous aerosol. Models of this type have also
been used to study the sources that contribute to secondary sulfate aerosol formation and they have been used
to follow releases of toxic gases in local spills. Variants of the Gaussian plume model are often employed for
regulatory purposes. The modest input requirements of these models are the key advantage. Frequently the
goal is to estimate the maximum likely impact, so “worst case” meteorological conditions, ie, conditions that
cause local pollutant accumulation, are modeled along with the maximum emissions rate that is allowed at the
facility.

Of great interest is the use of chemically active air quality models for studying and controlling urban
air pollution. This is because of the high costs of controls, the complexity of the system, and the historic lack
of success in reducing ozone levels in urban areas. Interest in extending the application of chemically active
models to the regional scale has heightened because the ozone problem has been recognized as extending well
beyond urban areas.

The lack of success in reducing ozone levels can be partially ascribed to the nonlinearity of the system.
An incremental change in the emissions of precursors to a secondary pollutant such as ozone need not lead to a
proportional change in the pollutant concentration, or any change at all. For example, both NOx and organics
are precursors to the formation of O3, but increasing the emissions of one can have a very different result from
increasing those of the other. In fact, decreasing NOx emissions may increase O3 concentrations nearby while
at the same time decreasing O3 concentrations downwind. On the other hand, reducing emissions of reactive
organic gases (ROGs) can lead to significant decreases in ozone in some cities, such as New York, but have
little effect in other cities and in rural areas. A common representation of the relationship between maximum
O3 concentrations and initial concentrations of NOx and ROGs is an O3 isopleth diagram as shown in Figure
8. Regions of both high and low sensitivities to NOx and ROG emissions are shown. Analysis of the effect of
emission controls on O3 air quality is further complicated by the fact that the effect of controlling two emission
sources together is not necessarily equal to the sum of the incremental improvements from controlling each
source alone. Thus definitively assessing the impact that a single source has on air quality is clouded in that
its impact responds dynamically to changes in other sources and to varying meteorological conditions.

Because of the severity of the smog problem in Los Angeles, this location is the most studied area with
regard to the role of NOx and ROG emissions in the formation of ozone and other photochemical pollutants.
The effect of NOx and ROG emissions on ozone formation was found to vary throughout the region (83). Near
downtown Los Angeles, ozone formation is inhibited by increasing NOx emissions, and is effectively reduced
by lowering ROG emissions. Downwind, however, where the highest ozone levels are found, ozone is relatively
insensitive to ROG emissions, and is effectively reduced by lowering NOx emissions. Modeling studies have also
shown that concentrations of associated pollutants, such as nitric acid, aerosol nitrate, NO2, and peroxyacetyl
nitrate (PAN), are lowered when NOx emissions are controlled (45). Another application of chemically active air
quality models has been to study the effectiveness of using alternative automotive fuels, such as methanol (see
ALCOHOL FUELS), compressed natural gas (see GAS, NATURAL), and electric power (see BATTERIES), for reducing
smog (84).

Regional oxidant and acid deposition models came into use later than urban photochemical models be-
cause of the increased computational intensity, the need to describe more physical and chemical processes,
and the later regulatory mandate for development and use. Regional models are very similar to urban-scale
photochemical models, differing primarily in their horizontal resolution, 20–100 km vs 4–5 km, and in their
treatment of cloud processes and liquid-phase chemistry. Applications of regional models also cover longer
periods because of the increased residence time of polluted air masses within their domain. For example,
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Fig. 8. O3 isopleth diagram showing the response of O3 concentrations to changes in initial NOx and nonmethane
hydrocarbon concentrations expressed as parts per million of carbon atoms (ppm C). The response to NOx reductions is
dependent on the particular initial concentrations. At point A, the graph indicates that decreasing NOx would increase O3
formation, and at point C, a decrease in the NOx concentration results in a much larger decrease in O3 concentrations than
a similar decrease at point B on the same isopleth.

applications have followed the evolution of regional pollution episodes of over a week in the northeastern
United States, compared to local episodes of two or three days in Los Angeles.

Regional ozone modeling of the Northeast has shown that air pollution problems across cities within this
region are linked (85). Air masses starting in Washington, D.C. can travel up the coast, impacting downwind
cities such as Baltimore and New York. Emissions in New York further impact Connecticut and Massachusetts.
These studies have shown that the type of controls that are most effective in one city may be counterproductive
in another. For example, modeling studies have found NOx control to be effective for controlling ozone in Boston,
Washington D.C., and Philadelphia, but lead to increased concentrations in New York (85). The horizontal
resolution of the model used for this study was about 20 km, giving some detail in urban areas but not as much
as urban-scale models provide.

A variety of models have been developed to study acid deposition. Sulfuric acid is formed relatively
slowly in the atmosphere, so its concentrations are believed to be more uniform than ozone, especially in and
around cities. Also, the impacts are viewed as more regional in nature. This allows an even coarser horizontal
resolution, on the order of 80 to 100 km, to be used in acid deposition models. Atmospheric models of acid
deposition have been used to determine where reductions in sulfur dioxide emissions would be most effective.
Many of the ecosystems that are most sensitive to damage from acid deposition are located in the northeastern
United States and southeastern Canada. Early acid deposition models helped to establish that sulfuric acid
and its precursors are transported over long distances, eg, from the Ohio River Valley to New England (86–88).
Models have also been used to show that sulfuric acid deposition is nearly linear in response to changing levels
of emissions of sulfur dioxide (89).

In the mid-1980s, the destruction of the ozone layer above the Antarctic was recognized to be a poten-
tial environmental disaster, and chemically active transport models were used to identify the most important
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processes leading to depleted stratospheric ozone levels. As with ground-level chemistry, the gas-phase chem-
istry that occurs in the stratosphereis relatively well understood, but the incorporation of heterogeneous
chemistry is an ongoing challenge. In addition, the models that have incorporated stratospheric chemistry in
the greatest detail have oversimplified the transport and dynamics of stratospheric circulations. Conversely,
three-dimensional models that focus on the dynamics of the atmosphere have used limited treatments of
stratospheric chemistry.

Zero- through three-dimensional models have been used to simulate the stratospheric ozone problem.
Zero-dimensional models focus on radiative transfer and chemistry at a single point. One-dimensional models
incorporate vertical diffusive transport as well. Two-dimensional models currently represent the best compro-
mise between computational tractability and chemical detail (90), and are resolved by latitude, as well as in the
vertical dimension. Stronger flows and greater homogeneity over changes in longitude make two-dimensional
treatments reasonable, except in the polar regions. Three-dimensional models are needed to study the dynamics
of polar regions, including exchanges with air at lower latitudes.

Meridional circulation in two-dimensional stratospheric models has been specified based on observations
or general circulation model calculations; recently efforts have been undertaken to calculate circulations from
first principles, within the stratospheric models themselves. An important limitation of using models in which
circulations are specified is that these cannot be used to study the feedbacks of changing atmospheric composi-
tion and temperature on transport, factors which may be important as atmospheric composition is increasingly
perturbed.

The key gas-phase reactions occurring in the stratosphere are generally known. Comprehensive reviews of
kinetic data have led to general consensus on the rate parameters that should be used in stratospheric models
(91). Nevertheless, discrepancies are still apparent when the chemical components of different stratospheric
models are compared. Disagreements arise from differing estimates of photolysis conditions in the stratosphere,
depending in part on whether or not light scattering in the troposphere is included in the model (91).

Heterogeneous chemistry occurring on polar stratospheric cloud particles of ice and nitric acid trihydrate
has been established as a dominant factor in the aggravated seasonal depletion of ozone observed to occur over
Antarctica. Preliminary attempts have been made to parameterize this chemistry and incorporate it in models
to study ozone depletion over the poles (91) as well as the potential role of sulfate particles throughout the
stratosphere (92).

Models can be used to study human exposure to air pollutants and to identify cost-effective control strate-
gies. In many instances, the primary limitation on the accuracy of model results is not the model formulation,
but the accuracy of the available input data (93). Another limitation is the inability of models to account for the
alterations in the spatial distribution of emissions that occurs when controls are applied. The more detailed
models are currently able to describe the dynamics of unreactive pollutants in urban areas.

Because of the expanded scale and need to describe additional physical and chemical processes, the de-
velopment of acid deposition and regional oxidant models has lagged behind that of urban-scale photochemical
models. An additional step up in scale and complexity, the development of analytical models of pollutant dy-
namics in the stratosphere is also behind that of ground-level oxidant models, in part because of the central role
of heterogeneous chemistry in the stratospheric ozone depletion problem. In general, atmospheric liquid-phase
chemistry and especially heterogeneous chemistry are less well understood than gas-phase reactions such as
those that dominate the formation of ozone in urban areas. Development of three-dimensional models that
treat both the dynamics and chemistry of the stratosphere in detail is an ongoing research problem.
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