
CHEMOMETRICS

1. Introduction

Chemometrics (1–3) or more general multivariate regression methods (4,5) are
applied in many research fields from social science to measurement techniques.
There are two competing and equivalent nomenclature systems encountered in
the chemometrics literature. The first, derived from the statistical literature,
describes instrumentation and data in terms of ‘‘ways’’ that an analysis is per-
formed. Here a ‘‘way’’ is constituted by each independent and nontrivial factor
that is manipulated with the data collection system. Multiway techniques (the
section Multiway Analysis) have been investigated and applied to hyphenated
measurement techniques (6). For example, with excitation–emission matrix
fluorescence spectra, three-way data are formed by manipulating the excitation-
way, emission-way, and the sample-way. Implicit in this definition is a fully
blocked experimental design where the collected data forms a cube with no miss-
ing values. Equivalently, a second nomenclature is derived from the mathemati-
cal literature where data are often referred to in terms of ‘‘orders’’. In tensor
notation (7) a scalar is a zero-order tensor, a vector is first order, a matrix is sec-
ond order, a cube is third order, etc. Hence, the collection of excitation–emission
matrix fluorescence data would form a third-order tensor. However, it should be
mentioned that the ‘‘way’’ and ‘‘order’’ based nomenclature are not directly inter-
changeable. By convention, ‘‘order’’ notation is based on the structure of the data
collected from each sample. Analysis of collected excitation-emission fluores-
cence, forming a second-order tensor of data per sample, is referred to as sec-
ond-order analysis compared to three-way analysis. In this work the ‘‘way’’
based notation will be adopted.

Although there is a vast area of chemometric applications, analytical chem-
istry has been chosen to exemplify the principles. Especially optical measure-
ment techniques are usually multivariate and are appropriate for a descriptive

Vol. 6 CHEMOMETRICS 25

Kirk-Othmer Encyclopedia of Chemical Technology. Copyright John Wiley & Sons, Inc. All rights reserved.



discussion of chemometrics. The first question that arises when introducing che-
mometrics is What is chemometrics? Simply put, chemometrics is the application
of mathematical and statistical methods to the analysis of chemical data. How-
ever, it should be stressed that chemometrics is more than a subdiscipline of
mathematics or statistics. The key to artfully practicing chemometrics is to
extend the limitations of classical mathematics and statistics by understanding,
and relying upon, the constraints that chemistry places on possible solutions to a
statistically posed question. As Wold noted the impact of chemometrics is in pro-
blem solving not data analysis: chemometricians ‘‘must remain chemists and
adapt statistics to chemistry instead of vice versa (8).’’ Along these lines Booksh
and Kowalski (9) and Brown (10) define chemometrics more as an information
science that can be applied to many physical science disciplines. Chemometrics
is a truly interdisciplinary science that does draw from mathematics, statistics,
and information science; however, the tools from these disciplines cannot be
directly applied without sound knowledge and understanding of the chemical
system in question. Many statistical tools are useless to chemometricians
because the underlying assumptions are violated in the chemical system. Con-
currently, a chemometrician could develop very useful ‘statistical tools’ that can-
not be generalized beyond the chemical system in question. Furthermore, the
distinction between ‘‘statistical significance’’ and ‘‘practical significance’’ cannot
be reliably made without an understanding of both statistics and chemistry.
A broad overview of chemometric techniques—without going into depth—has
been published recently (11).

From a chemometric standpoint, data and instrumentation can be classified
based on the dimensionality of the data set obtained. Instrumentation can be
designed to generate a single datum of information per sample analyzed, an
ordered vector of data per sample analyzed, or a linked matrix of data per sample
analyzed. In general, the higher the dimensionality or number of ways of the
data set, the more powerful the instrument. And, consequently, more powerful
data analysis methods can be applied to higher directional data set. The different
ways of data are presented in Figure 1. A more complete discussion on the
interrelationship between data structure and analyzability can be found in
references 9 and 12.
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Fig. 1. Matrix representation of data structure for three classes of data.
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The most basic type of data is univariate data. Examples of univariate are
data collected from a pH meter or single-channel photometer. Univariate data is
the lowest dimensionality of data—a univariate instrument returns a zero-
dimensional (zero-order) data tensor. Consequently, a collection of data from a
univariate sensor forms a vector and is said to be one-way data. That is it varies
in only one way: sample-to-sample.

The majority of literature in chemometrics addresses analysis of multivari-
ate data. Examples of multivariate data include chromatograms or spectra. Ana-
lysis of a single sample with a multivariate instrument yields a one direction
(first-order) data tensor or vector. A collection of samples forms a two directional
matrix and is said to be two-way data because it varies from sample to sample
and wavelength to wavelength.

Multiway data are formed, eg, by hyphenated instrumentation such as gas
chromatography–mass spectrometry (gc–ms) and excitation–emission matrix
spectrometers. Analysis of a single sample yields a two-dimensional (2D)(sec-
ond-order) tensor (matrix) of data. The key to having true multiway data is
that one instrument (or order) must modulate the other instrument (or order).
For example ultraviolet–visible–infrared (uv–vis–ir) is not multiway data
because the uv–vis and ir spectra of a molecule do not modulate each other. A
collection of sensor readings during the progression of a batch process form mul-
tiway data (sensors by time). There is no upper limit on the number of ‘‘ways’’
that could go into a data set. Conceivably, one could employ an online high per-
formence liquid chrometography (HPLC)–uv–vis spectrometer to monitor a ser-
ies of batch processes. A four-way data tensor results: wavelength by
chromatographic retention time by time in the batch by batch.

2. Linear Regression Analysis

2.1. Notation and Fundamental Mathematical Tools. Orthogonal
matrices have the following property: U�1(K�K )¼UT or U �UT¼1(K�K ). For rec-
tangular U(N�K ) matrices consisting of orthonormal rows or columns, a similar
property holds:

x Scalar—upper case italics represent fixed values, ie, J samples; lower case
italics represent variables, ie, the jth sample.

x Column vector.
jjxjj2 2-Norm of a vector, ie, it’s Euclidian length.
X(N�K) Matrix with N rows and K columns.

xT, XT Transposed vector (row vector), transposed matrix.
X�1, Xþ Inverse matrix (if existent), pseudoinverse or Moore-Penrose pseudoinverse

(4,13) for pseudoinverting rank-deficient or rectangular matrices (see below).
X Third-order tensors—a character with a subscript (or subscripts) is assumed to

be the appropriate elements from a higher dimensional data matrix. For
example, Xk is the kth slice of the tensor X.

x̂x Estimate of the true value x.

U �UT ¼ 1ðN�NÞ and UT �U ¼ 1ðK�KÞ ð1Þ
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A singular value decomposition (SVD) (13,14) of a matrix

XðK�NÞ ¼ UðK�KÞ � SðK�KÞPT
ðK�NÞ ð2Þ

factorizes an arbitrary matrix X into two orthogonal matrices U and P as well as
a diagonal matrix S¼diag(s1 . . . sK). Usually, the singular values sk are order de-
creasingly; the columns of U and the rows of PT are ordered accordingly. If X is
rank-deficient, ie, the rank is R<min(N,K), only R singular values are unequal
to zero sR<min(N,K) 6¼ 0. Hence, the matrices on the right-hand side of (eq. 2)
can be a downsized without loss of information to

XðK�NÞ ¼ UðK�RÞ � SðR�RÞ �PT
ðR�NÞ ð3Þ

A matrix inversion based on SVD is known to be numerically very stable (14). A
full-rank square matrix is inverted utilizing the properties of orthogonal
matrices:

X�1ðK�KÞ ¼ UðK�KÞ � SðK�KÞ �PT
ðK�KÞ

h i�1
¼ P � S�1 �UT ð4Þ

For rectangular or singular X the Moore-Penrose pseudoinverse (4,13) has been
defined. It combines the ideas of equations (3 and 4): A SVD of X (eq. 2) is calcu-
lated followed by downsizing of the three matrices to R, the number of nonzero
singular values (eq. 3). This enables the inversion of S, then equation 4 is
formally applied

XþðN�KÞ ¼ UðK�RÞ � SðR�RÞ �PT
ðR�KÞ

h i�1
¼ P � S�1 �UT ð5Þ

2.2. Univariate Regression. Two different types of variables are used
in regression analysis: predictor or x variables and response or y variables (4).
The x variables can be observed but not controlled; values of the y variables
are determined by the values of the corresponding x variables. The simplest
system is a linear univariate system, which relates the predictor variable x via
a proportionality constant a directly to the response variable y, the target figure:

y ¼ a � x ð6Þ

In spectroscopy, eg, the predictor variable would be the absorption A of a sample
at a certain wavelength, the concentration c of a certain chemical in the sample
plays the role of the response variable. According to Beer’s law, the absorption

A ¼ ðL � eÞ � c ð7Þ

is directly proportional to the concentration. In this case, the proportionality
constant is the inverted product of absorption path length L and the chemical’s
molar extinction coefficient e at the considered wavelength. Since A is the mea-
sur and acquired to determine c the following equation is the analogue to eq. 6:

c ¼ 1

L � e � A
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In order to incorporate a constant offset, eg, a constant background absorption
A0, the model (eq. 6) is extended to

y ¼ a0 þ a1 � x ð8Þ

or, respectively,

c ¼ A0 þ 1

L � e � A ð9Þ

Amodel is linear in the regression sense, if it is linear in the model parameters a0
and a1. A polynomial model

y ¼ a0 þ a1 � xþ a2 � x2 þ � � � þ aq � xq ð10Þ

is also linear in this meaning; y¼a0� exp(�a1�x), eg, is not linear.
The model parameters a0 and a1 (eq. 8) are usually not known and must be

determined experimentally by means of a calibration. One would prepare, eg,
two samples with known concentrations c1

cal and c2
cal of the target analyte

and would measure the absorbances A1
cal and A2

cal of both calibration samples
at the chosen wavelength:

ycal1 ¼ a0 þ a1 � xcal1 or ccal1 ¼ A0 þ 1

L � e � A
cal
1

ycal2 ¼ a0 þ a1 � xcal2 or ccal2 ¼ A0 þ 1

L � e � A
cal
2

ð11Þ

These two equations set up an equation system with two unknowns a0¼A0 and
a1¼ 1/L � e, which can be solved. Now, unknown samples can be analyzed by mea-
suring their absorption xmeas¼Ameas. a0 and a1 are used then in equations 8 and
9, respectively, for determining concentration ymeas¼ cmeas. Unfortunately, there
are always measurement errors e disturbing the true model (eq. 8). Instead of the
undisturbed model (eq. 8) one has to deal with:

y ¼ a0 þ a1 � xþ � ð12Þ

Since every measurement is affected by a different and unpredictable error e
including K> 2 calibration samples

ðxcal1 ; ycal1 Þ; . . . ; ðxcalK ; ycalK Þ ð13Þ

does not solve this problem—there are always more unknowns than equations.
Hence, a0 and a1 cannot be derived from the correct model (eq. 8) by solving a
set of calibration equations (eq. 11).

To overcome this problem and to get a workable solution, one has to accept
errors in the model parameters and estimate them by means of a least-squares
fit. The estimated parameters are denoted by â0 and â1. As will be discussed
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below, â0 and â1 will be determined from error affected calibration data in such a
way, that they are a good compromise explaining the calibration set (eq. 13) as
accurate as possible. The conditions for good estimates will be discussed in more
detail in the section Statistical Background of Regression Analysis. The idea
behind linear least-squares regression is to determine estimators â0 und â1
from a calibration set (eq. 13) such that the sum of squared errors S is minimized:

S ¼
XK
i¼1

�2i ¼
XK
i¼1
ð ycali � ½âa0 þ âa1 � xcali �Þ2 ð14Þ

In order to derive the minimum of S(â0,â1), partial derivatives of equation
14 with respect to â0 und â1 are calculated and set to zero. In theory, this results
in an extremum, which could also be a maximum, however, â0 und â1 can be
chosen so out of the way that S can reach basically any value. For all practical
purposes a minimum of S is obtained.

@S

@âa0
¼ 2 �

XK
i¼1
ð�1Þðycali � ½âa0 þ âa1 � xcali �Þ ¼ 0

@S

@âa1
¼ 2 �

XK
i¼1
ð�xcali Þ � ðycali � ½âa0 þ âa1 � xcali �Þ ¼ 0

ð15Þ

Die addends containing the response variable y are transferred to the right side
of the equation system (eq. 15). Also the matrix notation is used from here on

PK
i¼1 1

PK
i¼1 x

cal
iPK

i¼1 xcali

PK
i¼1 x

cal
i � xcali

0
@

1
A � âa0

âa1

� �
¼

PK
i¼1 1 � ycaliPK
i¼1 xcali � ycali

0
@

1
A ð16Þ

Equation system 16 is solved resulting is the estimates â0 and â1 of the true
model parameters a0 and a1. Now, â0 and â1 are used in equation 8 instead of
a0 and a1 for evaluating unknown samples [see paragraph after equation 11]:

ymeas ¼ âa0 þ âa1 � xmeas ð17Þ

This procedure can easily be extended to handle polynomial models (eq. 10).
2.3. Figures of Merit for Univariate Chemical Analysis. One essen-

tial task in chemometrics is comparing quantitatively the performance of multi-
ple types of chemical sensors or of multiple options for calibration models. In
order to objectively perform these comparisons, it is useful to have quantifiable
criteria on which discussions are based. Examples of such quantifiable criteria
include speed, cost, reliability, precision, sensitivity, selectivity, and detection
limit of analysis (15). While speed, cost, and reliability weigh heavily in prag-
matic decisions of which instrumental technique to employ for a particular appli-
cation, these figures of merit are not intrinsic to a given instrumental method.
For example, the cost and speed of analysis largely depends on the number of
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samples to be analyzed; with large quantities of samples economic and time sav-
ings can be achieved through bulk purchasing and automation. However, the
final four figures of merit are intrinsic to the application of an instrumental
method and are directly related to the instrumental response for a particular
set of analytes.

The selectivity is the fraction of the instrumental signal that is unique to
the analyte. Assuming the instrument is ‘‘zeroed’’ to remove any baseline,

SEL ¼ ra
r

ð18Þ

where ra is the instrumental signal of just the analyte and r is the instrumental
signal of the sample. The SEL is a value between 0 and 1 with SEL¼ 1 being a
fully selective sensor. For univariate calibration, an instrument must be fully
selective. Otherwise, a bias will be imbedded in the prediction of future samples.
There is no way, based only on statistical analysis of collected data, to determine
the contribution or existence of nonselective interferents in any given ‘unknown’
sample.

The sensitivity is the change in instrumental response r with respect to
changes in analyte concentration

SEN ¼ @r

@c

For univariate linear calibration, this is the slope of the calibration curve, ie, the
constant a1 in equation 8. The precision of a method is best expressed in the
signal to noise ratio (S/N),

S=N ¼ ra
e

where e is a measure of the reproducibility of replicated measurements. In many
cases, the measurement reproducibility is not concentration dependant, eg, if
thermal noise limited analyses. In this case S/N will not vary with analyte
concentration.

The limit of detection (LOD) is defined by the International Union of Pure
and Applied Chemists and the American Chemical Society to be the smallest
amount of a chemical that can be reasonably detected by a given analytical
method (16). Of the many ways to calculate the LOD, determine ra¼ ymeas¼ cmeas

for given a signal, xmeas (eq. 17), equal to three standard deviations of replicated
instrumental blanks is the most straightforward. Assuming the calibration
model is linear, univariate, and free of instrumental offset [a0¼ 0 (eq. 8)], the
detection limit can be expressed as

LOD ¼ 3 � e
a1
¼ 3 � e

SEN
ð19Þ

where a1 (eq. 8) is the slope of the calibration (16).
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2.4. Multivariate Linear Regression (MLR). Calibration. If the res-
ponse variable y is linearly dependent on several predictor variables the univari-
ate approach (see section Univariate Regression) has to be extended to the
multivariate method named multivariate least-squares regression or multilinear
regression (4,17). In the following, only two predictor variables x(1) and x(2) are
used to keep the discussion concise, but the concept is easily extended to more
x variables. Equation 12 is replaced in a multivariate case by

y ¼ a0 þ a1 � xð1Þ þ a2 � xð2Þ þ � ð20Þ
In case of two predictor variables, a fit plane is determined by the calibration—in
higher dimensional applications a hyperplane is obtained.

As an example, the concentration of a chemical might be additionally tem-
perature dependent, ie, an experimenter has to measure the absorbance A¼ x(1)
at a certain wavelength and the temperature T¼ x(2) of a sample. From these two
reading he/she can calculate the concentration c¼ y. For this purpose, three
model parameters have to be estimated: a0¼A0 the background absorption,
a1¼ 1/L�e [see discussion after equation 11], and a temperature coefficient
a2¼ 1/t. For this estimation K� 3 calibration samples (xcal(1)1,x

cal
(2)1,y

cal
1), . . . ,

(xcal(1)K,x
cal

(2)K,y
cal

K) have to be provided. They are obtained in this example
from measuring the absorption A and the temperature T of samples with
known chemical concentration.

To estimate the three model parameters in

ycal ¼ âa0 þ âa1 � xcalð1Þ þ âa2 � xcalð2Þ ð21Þ

the sum of squared errors [cf. equation 14]

S ¼
XK
i¼1

�2i ¼
XK
i¼1

ycali � âa0 þ âa1 � xcalð1Þi þ âa2 � xcalð2Þi
h i� �2

is minimized. For this purpose the three partial derivatives are calculated and
set to zero equivalent to the univariate case (see section Univariate Regression).
This results in the following equation system:PK

i¼1 1
PK

i¼1 x
cal
ð1Þi

PK
i¼1 x

cal
ð2ÞiPK

i¼1 x
cal
ð1Þi

PK
i¼1 x

cal
ð1Þi � xcalð1Þi

PK
i¼1 x

cal
ð1Þi � xcalð2ÞiPK

i¼1 x
cal
ð2Þi

PK
i¼1 x

cal
ð2Þi � xcalð1Þi

PK
i¼1 x

cal
ð2Þið2Þical

0
BBBB@

1
CCCCA �

âa0

âa1

âa2

0
BB@

1
CCA ¼

PK
i¼1 1 � ycaliPK
i¼1 x

cal
ð1Þi � ycaliPK

i¼1 x
cal
ð2Þi � ycali

0
BBB@

1
CCCA
ð22Þ

This equation can be written in a more compact notation allowing easier opera-
tions on the data in the remainder. Therefore, the following vectors and matrices
are defined

ycal ¼ ðycal1 � � � ycalK ÞT 1 ¼ ð1 � � � 1ÞT a ¼ ða0 a1 a2ÞT

xcal
ð1Þ ¼ xcalð1Þt � � � xcalð1ÞK

� �T
xcal
ð2Þ ¼ xcalð2Þ1 � � � xcalð2ÞK

� �T
Xcal
ðK�3Þ ¼ 1 xcal

ð1Þ x
cal
ð2Þ

h i ð23Þ
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By using these definitions, equations 20 and 22 can be rewritten in matrix
notation

ycal ¼ Xcal � aþ � ð24Þ

XT cal �Xcal � âa ¼ XT cal � ycal ð25Þ

The estimate of the fit parameters â can finally be determined by multiplying the
inverse of the covariance matrix from the left:

âa ¼ ðXT cal �XcalÞ�1 �XT cal � ycal ð26Þ

Equation 25 is known as the normal equation of a least-square problem. If the
covariance matrix is singular, equation 26 has to employ the Moore-Penrose
pseudoinverse [see the section Notation and Fundamental Mathematical Tools,
equation 5 and the following Supplementary Topics section]:

âa ¼ Xþ cal � ycal ð27Þ

Prediction. A response variable ymeas¼ cmeas of an unknown sample, a
concentration value, eg, can be predicted from an unknown data set xmeas¼
(1 x(1)¼A x(2)¼T)Tmeas comprising in the given example measured values for
the absorbance A and temperature T by

ymeas ¼ âaT � xmeas ð28Þ

An offset free model a0¼ 0 (eq. 20) can always be obtained by mean centering (see
also section Data Pretreatment—Mean Centering and Scaling).

For this purpose, the first row of equation 22 is rewritten

k � âa0 þ k � âa1 � �xx cal
ð1Þ þ k � âa2 � �xx cal

ð2Þ ¼ k � �yy cal

The bar on top of the variables indicates mean values. Dividing this equa-
tion by k and solving for â0 results in

âa0 ¼ �yy cal � âa1 � �xx cal
ð1Þ � âa2 � �xx cal

ð2Þ

This equation for â0 is used in equation 21

ycal � �yy cal ¼ âa1 � xcalð1Þ � �xx cal
ð1Þ

� �
þ âa2 � xcalð2Þ � �xx cal

ð2Þ
� �

This mean centered model is reduced by one parameter, and hence one degree of
freedom. Now, the whole multivariate least-squares procedure described above is
performed on predictor and response variable subtracted by their mean values. If
mean centering is applied, equation 28 must also incorporate mean centering

ymeas ¼ âaT � ðxmeas � �xxcalÞ þ �yy cal
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For deriving equation 24 only two predictor variables and a bias were assumed.
If N predictor variables have to be included into the calibration model, Xcal must
be augmented by additional columns containing the appropriate calibration va-
lues, eg, absorbances at several wavelength positions.

If M response variables, concentrations of several chemicals, eg, have to be
determined, ycal and a (eq. 24) have to be augmented by one column per response
variable:

bycal
1 � � �ycal

M c ¼ Xcal � ½a1 � � � aM� þ �

Ycal
ðK�MÞ ¼ Xcal

ðK�NÞ �AðN�MÞ þ �
ð29Þ

Instead of estimating a model vector a by means of equation 26, a model matrix A
is estimated by

ÂA ¼ ðXcalT �XcalÞ�1 �XcalT �Ycal ð30Þ

Unknown predictor variables or measurement vectors xmeas are evaluated then
by

ymeas
1

..

.

ymeas
M

0
B@

1
CA ¼ ÂAT � xmeas ð31Þ

Supplementary Topics

1. The concept of pseudoinverses (the section Notation and Fundamental
Mathematical Tools) is closely related to MLR applications (eq. 27). For
the following short discussion, Xcal is assumed to have rank R<min(K, N).
Hence, the covariance matrix in equation 26 cannot be inverted. In
equation 32, the ‘‘inversion’’ of a rectangular matrix P, which consists of
orthonormal columns, is performed in the sense of equation 1. The reader
has to keep in mind, that the following is done in a descriptive way without
being mathematically thorough.

ðXT cal �XcalÞ�1 �XT cal ¼ P � S �UT �U|fflfflfflffl{zfflfflfflffl}
¼1

�S �PT

0
@

1
A�1P � S �UT

¼ P � S�2 �PT �P � S �UT

¼ P � S�1 �UT

¼ Xþ cal ð32Þ

2. The computation of the pseudoinverse Xþcal in equation 27 involves a SVD
of Xcal (eq. 5) (section Notation and Fundamental Mathematical Tools),
which can be computed in a very reliable way. However, the SVD algorithm
takes a lot of computation power: The number of executed floating point
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operations (flops), ie, additions and multiplications, of a widely used (14)
SVD algorithm is given in Ref. 13 to be

flops SVDðXcal
ðK�NÞÞ

n o
¼ 14 �K �N2 þ 8 �N3 ð33Þ

According to equation 33, it is evident, that it takes fewer flops to decompose the
transposed matrix XcalT than Xcal, whenever N>K since

flops SVDðXcal T
ðN�KÞÞ

n o
¼ 14 �N �K2 þ 8 � K3 < 14 �K �N2 þ 8 �N3

¼ flops SVDðXcal
ðK�NÞÞ

n o ð34Þ

After transposing XcalT, one obtains the same matrices from the SVD but in
reversed order and transposed. Rearranging and transposing them to get
the correct pseudoinverse Xþcal is in almost all cases much faster than
decomposing the original matrix Xcal.

3. Another important property of â is that it is determined in such a way that
the vectors X�â and e, ie, the residuum, are orthogonal to each other

ðX � âaÞT � � ¼ ðX � âaÞT � ðy�X � âaÞ
¼ âaT �XT � ðy�X � ðXTXÞ�1 �XT � yÞ

¼ âaT � XT �XT �X � ðXTXÞ�1 �XT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

0
@

1
A � y

¼ 0

This general fact will be of importance for PLS (the section Partial Least
Squares).

2.5. Data Pretreatment—Mean Centering and Scaling. The success
of multivariate and multiway data analysis often depends on the application of
data pretreatment to remove, scale, or standardize the sources of observed var-
iance. The methods described in this section are applicable to univariate, multi-
variate, and multiway data analysis strategies. Like all tools, the use and power
of each preprocessing methods should be understood before it is applied. Pre-
treating data, if done properly, can bring out desired information. Likewise, pre-
treating data, if done improperly, can obscure any desired information embedded
in the data.

‘‘Mean centering’’ and ‘‘variance scaling’’ (18) are often performed on multi-
variate data without much thought to the consequences of these actions. Mean
centering removes the average, or mean, response of a given variable or sample.
This translates the variance of the data set to be centered about the ordinate
axis. Variance scaling normalizes each variable, or sample, such that the
data’s variance becomes unity. This places the data on a unit sphere. When
mean centering and variance scaling are both applied to a collection of data,
the data is said to be ‘auto scaled.’ Auto scaling places the data on a unit sphere
centered about the origin of the multivariate space of the data.

There are specific instances when mean centering and variance scaling
should and should not be applied to a data set. In general, mean centering
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aids in interpretation of factor analysis (FA) models and construction of calibra-
tions. By removing the mean of the data set, often one less factor is required for
analysis. An exception may occur when the data is collected under ‘closure’
(19,20). Closure exists when the sum of the variables or concentrations is con-
strained to equal a preset value. The most common type of closure is seen in mix-
ture analysis when the sum of percent composition of all detectable species is
constrained to equal 100%. Other examples may occur when improper experi-
mental designs are employed. When closure exists, mean centering will not
always eliminate a factor. In these instances, the errors introduced by estimating
the mean of the data set are not offset by the gains associated with a simpler
model.

Mean centering is applied by subtracting the mean spectrum of the data set
from every spectrum in the data set. For a data set R(I�J ) of I samples, each of J
predictor variables like discrete digitized wavelengths, the mean centered jth
wavelength of the ith sample is defined by

mcRi;j ¼ Ri;j �
XJ
j¼1

Ri;j

�
J

 !
ð35Þ

In a multivariate sense, this preprocessing method translates the collection of
data to the origin of the multivariate space, where analysis will be performed.
The practical consequence of mean centering data is often a more simple and
interpretable regression model. In effect, mean centering removes the need for
an intercept from the regression model. Consequently, since fewer terms in the
regression model may need to be estimated, estimated analyte concentrations
may be more precise following mean centering the data. It should be noted
that mean centering does not always yield the most precise calibration model.
Each calibration method should be tested on mean centered and nonmean cen-
tered data.

The effect of mean centering is demonstrated in Figure 2. Figure 2a pre-
sents raw NIR spectra of the 40 cornflour samples, while Figure 2b presents
the mean-centered spectra. Although the spectra do not appear to be visually
interpretable, none of the variance within the data set has been altered. The
major effect of mean centering is removing the broad sloping background from
the data collection. The effect of mean centering on principal component based
models is shown in the cartoons of Figure 2c and d. The data cloud in the
upper right corner of Figure 2c is translated to the origin of the J dimensional
space. The arrows of Figure 2c and d present the direction of greatest variance
from the origin. For the nonmean centered data, the direction of greatest var-
iance is the mean of the spectra. With mean centered data, the direction of great-
est variance is now the direction of greatest variance within the data set.
Consequently, more of the information content of a data set can usually be
described with a simpler model if the data is mean centered.

When a data set is variance scaled all variables, or samples, are given equal
weight in determining the factors of the model. This may be beneficial when vari-
ables with small variance have greater predictive variance than variables with
larger variance. A prime example is seen in fusing data measurements with
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drastically different scales (ie, physical measurements like temperature and
pressure with spectroscopic data). However, in most spectroscopic, chromato-
graphic, or electrochemical analyses, the measurement is chosen such to be
most sensitive to the analyte of interest. Here, it would not be favorable to
give equal weight to background noise in uninformative measurements as is
given to measurements with maximum analyte sensitivity.

Variance scaling is applied to the jth wavelength of every spectrum by divi-
sion of the standard deviation of the jth wavelength over all spectra in the
calibration set. Thus, by variance scaling, the impact each variable has in deter-
mining the parameters of the calibration model is equalized. Variance scaling is
best employed when the variance of a particular wavelength has no correlation to
the useful information content of that particular wavelength. Variance scaled
data gives equal weight to all wavelengths, regardless of whether they represent
a vibrational overtone, scattering, or just baseline noise. Consequently, variance
scaling is seldom beneficial for spectroscopic calibration. However, in instances
where the analytically useful signal is very weak compared to other signals, vari-
able scaling can be essential.

The effect of variance scaling and auto scaling are shown in Figure 3 for the
cornflour spectra. Variance scaling of the corn flour spectra have little superficial
effect seen in Figure 3a. However, a close inspection would show that the spread
of data at each wavelength is much more uniform across the spectra. This is more

Fig. 2. In this figure the effect of mean centering the data set can be seen. (a) The raw
data for 40 NIR spectra from corn flour samples. (b) The same spectra after mean center-
ing. (c) Pictorial representation of a data cloud in two-dimensional space without mean
centering. The arrow represents the first PC. (d) Pictorial representation of the same
data cloud after mean centering; note that the data cloud becomes centered on the ordi-
nate axis. The arrow represents the first PC.
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readily seen in Figure 3b, where variance scaling is applied to the mean-centered
spectra. Thus auto scaling the data. Figure 3c shows that variance scaling trans-
forms the oblong data cloud into a unit circle. The direction of greatest variance
from the origin is still the mean spectrum. Auto scaling translates the unit circle
to the origin of the data space. The direction of greatest variance is now deter-
mined by the internal variance of the data with each wavelength having equal
weight (regardless of the original magnitude of internal variance).

A third type of scaling often employed is scaling each variable or sample to
unit area. This scaling is successfully applied to samples when matrix or sam-
pling effects alter the measurement efficiency of a method. Examples include
sample-to-sample variance due to sample thickness in reflectance spectroscopy
and effective pathlength in other optical methods. Unit area normalization
obscures the absolute concentrations of analytes but preserves the relative con-
centration of constituents between and among samples. Therefore, absolute cali-
bration cannot be performed unless the calibration set is constrained by closure
once the data is normalized.

2.6. Statistical Background of Regression Analysis. As was dis-
cussed in the section Univariate Regression, the true model parameters cannot
be determined since the experimental calibration set is affected by measurement
errors. Instead of the correct model parameters estimates have to be determined

Fig. 3. The same data as in Figure 2 following (a) variance scaling and (b) auto scaling.
Pictorial representations of a data cloud following (c) variance scaling and (d) auto scal-
ing. The arrow represents the first PC. For variance scaling the data is transformed to lie
on a sphere with the same variance in each direction. For auto scaled data, the sphere is
translated to the origin of the coordinate axes.
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and used for prediction of unknown data sets. The question discussed in this
section is: How reliable are these estimates? It has been proven (5), that the
expectation values of the least squares estimates are unbiased, ie, E[âi]¼ai, if
the three Gauss-Markov conditions are fulfilled.

1. ie, the expectation value of all n measurement errors E[en]¼ 0 8n (eq. 12) is
zero. By means of this condition, it is guarantied that the assumed fit model
is appropriate for the measured data. This condition prevents, eg, that a
parabola is fitted to a cubic relationship between prediction and response
variables.

2. E[e2n] is equal 8n measurement points ie, the error of the measurement
data is independent from the values of predictor variable. This type of error
is called homoscedastic. If errors are heteroscedastic, the least-squares fit
would be more influenced by large predictor variable values than by small.

3. The errors in different measurements of the predictor variable(s) are uncor-
related E[en�em]¼ 0 8n 6¼m, this means in the spectroscopic example that
the measurement errors of the absorption at different wavelength positions
are uncorrelated.

3. Bilinear Chemometric Methods

The reported successes of multivariate chemical analysis are based on three
facts. (1) Most, if not all chemical processes are multivariate in nature. Conse-
quently, to be able to effectively perform in a multivariate world, multivariate
data must be collected and analyzed. (2) Even if only a single piece of information
is needed from a chemical system it is very difficult to design a sensor that is
fully selective to that property of interest. Therefore, to circumvent the lack of
fully selective sensors, arrays of partially selective sensors can be construc-
ted that rely on multivariate analysis methods to extract the information of
interest. (3) There are inherent advantages associated with the redundancy of
data when there are many more variables measured per sample than samples
collected.

3.1. Classical Least Squares (CLS) versus Inverse Least Squares
(ILS). This discussion on CLS versus ILS approaches is based on reference 21.
Again a spectroscopic application was used in this discussion since physical
meaningful objects help to understand the methods better. The difference
between both techniques lies in the approach, which will be explained by
means of the Beer’s law (eq. 7). The absorbance spectra are written in a matrix
Acal¼Xcal (eq. 23), the concentrations in a matrix Ccal¼Ycal (eq. 29). Replacing
both items back to predictor and response variables enables transforming this
discussion to applications other than spectroscopy.

The physics oriented CLS approach considers the measured spectra as pro-
ducts of molar extinction coefficients K (unit spectra) and concentrations Ccal.
The spectral errors are contained in EA:

Acal ¼ Ccal �KþEA ð36Þ
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The CLS calibration step estimates K by means of a multivariate least-squares
procedure equivalent the one presented in the section Multivariate Linear
Regression

K̂K ¼ ðCT
calCcalÞ�1 �CT

cal �Acal ð37Þ

and evaluates unknown spectra by

ĉcmeas ¼ ðK̂K � K̂KTÞ�1 � K̂K � ameas ð38Þ

If Ccal or K̂K are singular the corresponding pseudoinverse Cþcal or K̂Kþ (eq. 5) (the
section Notation and Fundamental Mathematical Tools) has to be used.

ILS uses a less intuitive calibration routine, which follows the introduction
into multivariate least-squares fits as given in the section Multivariate Linear
Regression:

Ccal ¼ Acal �PðN�MÞ þ EC

In this approach, P contains calibration coefficients, which relate the spectral
intensities to concentration of chemicals. The parameter Ec contains random con-
centration errors. This regression matrix P is purely a mathematical construct
and has no physical meaning. A calibration step estimates

P̂P ¼ ðAT
cal �AcalÞ�1 �AT

cal �Ccal ð39Þ

which can then be used for predicting unknown samples:

ĉcmeas ¼ P̂PT � ameas

Both methods have advantages and drawbacks: CLS minimizes spectral errors—
ILS minimizes concentration errors. Usually, the spectroscopic data contain
more noise then the calibration concentrations, which can be determined by
very precise reference methods. Hence, the CLS calibration (eq. 37) is the
more appropriate one compared to the ILS calibration (eq. 39) since CLS calibra-
tion is based on the precisely known model. The ILS method, however, uses the
less precise calibration based on noisier spectral data. Nonetheless, ILS is sup-
posed to be the superior approach for practical applications since it only needs
calibration concentrations of the analytes of interest. In order to make CLS a
good predictor calibration concentrations of all analytes must be included that
are expected during the measurement process. This restriction is severe, espe-
cially in process monitoring where usually a huge number of absorbers are
involved. For such applications it is unfeasible or even impossible to determine
calibration concentrations of all of them. This is emphasized by means of
Figure 4: Second derivative uv spectra obtained from gaseous samples containing
different concentrations of NH3, NO, and SO2 (22) have been analyzed by CLS
and PCR—a ILS based approach (see the section Principal Component Analysis
and Principal Component Regression). For demonstration purposes of how CLS
fails, only NH3 and NO had been calibrated although SO2 was contained in the
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calibration samples, too. It is obvious that the CLS calibration cannot handle the
SO2 features strongly overlapping the features of the calibrated analytes. PCR
on the other side, is able to calibrate the SO2 features implicitly and determines
correct concentration results. In many applications, eg, spectroscopic estimation
of octane number or Reed vapor pressure, no ‘‘spectrum’’ of the extrinsic property
would exist. Hence, ILS methods have to been applied.

3.2. Principal Component Analysis (PCA) and Principal Compo-
nent Regression (PCR). Factor analysis (FA) is employed to aid in visualiza-
tion of sample (time) dependent trends and measurement (sensor) dependent
trends in a multidimensional data space. In general, factor analysis does not
give a physically meaningful model—only correlations among samples and mea-
surements are determined. However, FA methods have been modified to apply
constraints and assumptions based on previous knowledge of the chemical sys-
tem being analyzed. These modified FA methods are useful for determining
the underlying instrumental and/or sample (time) profiles of the chemical consti-
tuents of a process. Perhaps the most commonly applied method of FA is princi-
pal component analysis–regression (PCA–PCR) (1–3,23,24)—an ILS based
approach. The PCA method only extracts the principal component (PC) or load-
ing vectors by means of which unknown measurement data will be represented.
It takes a second step to relate such an abstract data representation to chemical
properties, concentrations, eg. Both steps together are PCR and will be discussed
in the following.

Fig. 4. Comparison of CLS (see section Classical Least Squares) versus PCR (see section
Principal Component Analysis (PCA) and Principal Component Regression (PCR)) applied
to second derivative spectroscopy in case of incomplete calibration information. Calibra-
tion concentrations of gaseous NH3 and NO have been used—but not of SO2 (incomplete
information), which has also been contained in some calibration samples, though.
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The goal of PCA is to identify the major sources of correlated variance in a
collection of data. Once these sources of variance have been identified, they can
be exploited to aid in the visualization of the major trends throughout the data
collection. The data collection can be reduced from a complicated multidimen-
sional representation to a more easily visualized two- or three dimensional space
that describes the majority of the variance (information) in the data collection.

The conceptual idea behind PCA is presented in Figure 5. The largest direc-
tion of variance in the data collection is the first PC. The second PC is defined to
describe the maximum amount of variance in the data collection while con-
strained to be orthogonal to the first PC. Consequently, each additional PC is
also defined to maximize variance described while constrained to be orthogonal
to all preceding PCs. Note that the PCs are defined as vectors originating at the
origin of the coordinate space. Therefore, the PCs are dependent on the average
value of the data collection; translating the data cloud to a different point in
the coordinate space changes the direction of the PCs. For this reason, the
data collection is often translated to be centered about the origin of the coordi-
nate space (see the section Data Pretreatment—Mean Centering and Scaling).
However, the location of the data collection does not affect the ability of PCA
to model the data variance. Only the ease of interpreting the model is affected.

There is a difference between factor analysis and calibration methods: Fac-
tor analysis extracts underlying factors or model by means of which the analyzed
data can be described—calibration, however, extracts such factors and relates
them to chemical or physical properties. A calibration enables a prediction of

Fig. 5. Graphic representation of principal component analysis. For the data set (red
dots) principal components (blue lines) are defined to start at the origin of the coordinate
axis system. The first PC describes the main source of variance in the data. For uncen-
tered data, the first PC generally points from the origin of the coordinate axis through
the center of the data set; the second PC describes the direction of greatest variance
orthogonal to the first PC. For mean centered data, the center of the data set is translated
to the origin of the coordinate system; the first PC then describes the direction of greatest
variance.
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chemical or physical properties of unknown future samples, factor analysis ana-
lyzes the presented (calibration) data only.

Calibration. This discussion of PCR makes wide use of the multivariate
least-squares fit concepts (the section Multivariate Linear Regression) and the
same notation is used. To exemplify the discussion for spectroscopy, the corre-
sponding spectroscopic items are mentioned in parenthesis. During the calibra-
tion process, K calibration samples (spectra) are acquired. The values of N
different predictor variables x(1) . . . x(N) (absorption at different wavelength posi-
tions) are measured for each of these K calibration samples. These N predictor
variable values are concluded in N calibration vectors x(1)

cal . . . x(N)
cal (eq. 23)

comprising K values each, one for every calibration sample. These calibration
vectors define a calibration matrix X(K�Nþ1)

cal ¼ [1 x(1)
cal . . . x(N)

cal] (eq. 23). If
mean centering was applied, the first column of ones is not needed, ie,
X(K�N)

cal¼ [x(1)
cal . . . x(N)

cal].
Calculation of PCs can be accomplished by a singular value decomposition

of Xcal (SVD, eq. 2—see the section Notation and Fundamental Mathematical
Tools and Fig. 6):

Xcal
ðK�NÞ ¼ UðK�KÞ � SðK�KÞ �PT

ðK�NÞ ¼ TðK�KÞ �PT
ðK�NÞ ð40Þ

The K orthonormal PCs pk each consisting of N loading values are contained in
the rows of PT¼ [p1. . .pK]

T. The corresponding scores of the calibration spectra
are hold in the columns of T¼U�S. A scores vector, ie, a column of T, contains
K weight factors determining how strong which PC contribute to the correspond-
ing calibration sample (calibration spectrum). Often PT and S are multiplied,
what is not done here in order to retain orthonormal PCs enabling less costly
computations in the following. Calculating the PCs is a PCA, relating the PCs
to chemical information extends PCA to PCR.

Due to noise contained in the calibration data Xcal, the ‘‘chemical’’ rank of
Xcal is usually equal to min(K,N) although there are only R<min(K,N) chemical
meaningful PCs. The number of linear independent influences on the calibration
samples determines the number of chemical meaningful PCs.

Especially for process monitoring applications when only incomplete infor-
mation about the calibration samples is available, the decision about the true
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Fig. 6. With PCA the singular value decomposition is often employed to decompose a
data matrix Xcal into three submatrices U, S, and PT. These three matrices can be parti-
tioned into columns that describe systemic, often chemical, sources of variance and col-
umns that describe only random measurement related noise.
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‘‘chemical’’ dimension R of the calibration model is rather difficult. If all K PCs
would be included, the PCA calibration model would usually be overfitted and
hence the evaluation results would be downgraded (25). The parameter R is
usually determined by methods presented in the section Model Selection. After
finding R, P(R�N)

T and T(K�R) are downsized to the number of significant PCs
without changing the notation in the following. Evaluating an unknown data
set xmeas is a two-step process: In the first step, xmeas is projected onto the
PCs in order to determine its scores vector tmeas. The second step relates these
scores to chemical information (concentration of the calibrated analytes).
The scores itself have no chemical meaning, however, the wanted pieces of
chemical information are linear combination of the scores. This mapping matrix
B from scores to chemical information has to be extracted from the calibration
set, too

Ycal
ðK�MÞ ¼ TðK�RÞ �BðR�MÞ ) B̂B ¼ ðTTTÞ�1 �TT �Ycal ð41Þ

By comparing equation 41 to eqs. 29 and 30 reveals that B̂B plays the role of
Â and T̂T the one of Xcal in this application of multivariate least squares fit. Now
the calibration is finalized.

From a different standpoint, these PCs span a R-dimensional subvector
space of the N-dimensional vector space of real numbers RN. The scores are
the coordinates of the N-dimensional predictor variable vectors. All features con-
tained in the future unknown predictor vectors will be found in this subvector
space. However, the PCs have no physical or chemical meaning—they are linear
combinations of all physical or chemical properties present in the calibration
samples. The same is true for the score vectors.

Prediction of Unknown Samples. Based on a PCR calibration (see section
Calibration) unknown data sets xmeas can be evaluated by

xmeas ¼ P � tmeas þ �

t̂tmeas ¼ðPTPÞ�1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼1

�PT � xmeas ¼ PT � xmeas

ymeas ¼ BT � t̂tmeas

ð42Þ

The MLR analogon to the last line of equation 42 is equation 31.

The power of the PCA–PCR approach lies herein: One needs only to know
calibration information on the wanted response variables Ycal (eq. 29) even if
there are plenty of other unknown influences affecting the values of the predictor
variables—the algorithm determines by itself an appropriate calibration model,
ie, the PCs P (eq. 40) and a transform matrix B (eq. 41). However, all influences
occurring during the evaluation of unknown data sets xmeas must also be present
during calibration for being implicitly calibrated. In contrast to this, conven-
tional multivariate least squares regression (the section Multivariate Linear
Regression) needs the user to include all influences explicitly into an appropriate
calibration model Xcal.

An Experimental Example. Second derivative uv spectroscopy has been
used in this example of how PCR can implicitly calibrate imperfect measurement
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data. It was shown in (22) how a linear relation between concentrations and deri-
vative spectra is obtained. As an example gaseous ammonia samples in the con-
centration range 0–1000 ppm had been prepared and analyzed by means of a
PCR. The first calibration set contained two samples (0 and 103 ppm) only
which is in theory sufficient for such simple applications. Just one significant
PC was found. However, it was found that Beer’s law (eq. 7) is not valid over
the concentration range aimed at since the measured concentrations are falling
short over 300 ppm (Fig. 7).

As is demonstrated by means of Figure 8, this is not a problem of PCR but
of the employed measurement technique. Dividing the measured spectra by the
concentration values of the sample derives extinction or unit spectra. In Figure 8,
three experimentally determined extinction spectra are shown obtained from
low, medium, and high concentration samples. In absence of systematic mea-
surement errors, all three would be the same. However, with increasing concen-
tration the peak height is not increasing linearly, furthermore the shape of the
extinction spectra is smeared out and the peaks height ratio to each other
changes.

In a nutshell, there is more then one influence, ie, concentration, defining
the measurement data. Hence, a calibration model including just one predictor
variable vector or PC is not appropriate. The CLS (the section Classical Least-
Squares versus Inverse Least Squares) would not be able to lift this problem
since this algorithm is not flexible enough—it allows only for as many dimen-
sions of the calibration model as analytes have been calibrated. Not so PCR:
After increasing the calibration set to three calibration spectra (30, 514,
914 ppm), two significant PCs were found (Fig. 9).

Including both significant PC resulted in clearly improved concentrations
(Fig. 7). This second PC enabled an adjustment of the systematic measurement
errors. The nonlinear cooperation of the two factors is demonstrated by means of
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Fig. 7. Concentration errors (solid dots) determined with a one PC model obtained from
single compound samples—improved precision (hollow triangles) obtained with a two PC
model obtained from the same data set.
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Figure 10, which shows the concentration dependency of the corresponding
scores. The scores of the first PC increase with increasing concentration but
this increase is slowed with increasing concentration. The second loading is
also increasing for concentrations below �500 ppm due to enhancing the NH3

peak near 202 nm. Above, its importance is decreasing because of the altering
spectrum shape, which is getting more similar to the first factor. At �800 ppm
the second loading is zero, ie, for this concentration the first factor is proportional
to the NH3 derivative spectrum. Above this threshold, the second loading is
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Fig. 8. Comparing three normalized second derivative spectra (extinction spectra) of
gaseous NH3 diluted in N2 (22), ie, derivative spectra divided by the concentration of the
samples. If Beer’s law had been applicable, all normalized spectra would be equivalent.
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comprising one analyte and systematic measurement errors, ie, nonlinearities (Fig. 8).
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getting negative, ie, compared to the other two peaks the 202 nm peak is sup-
pressed further by the second factor.

3.3. Partial Least Squares (PLS). Partial least-squares regression
(PLS) (21,26–28) has been employed since the early 1980s and is closely related
to PCR and MLR. In fact, PLS can be viewed as a compromise midway between
PCR (the section Principal Component Analysis and Principal Component
Regression) and MLR (29) (the sections Multivariate Linear Regression and
Classical Least-Squares versus Inverse Least Squares and 3.1). In determining
the decomposition of Xcal and consequently removing unwanted random var-
iance, PCR is not influenced by knowledge of the calibration set’s response vari-
ables ycal and Ycal, respectively. Only the variance in Xcal is employed to
determine the loading vectors. Conversely, MLR does not factor Xcal prior to
regression; all variance correlated to response variables is employed for estima-
tion. PLS determines each loading vector to simultaneously optimize variance
described in Xcal and correlation with ycal. The PLS loading vectors are rotations
of the PCA PCs for a slightly different optimization criterion. In fact, numerous
algorithms exist that are optimized for various sizes of Xcal (30,31).

PLS has two distinct advantages compared to PCR. First, PLS generally
provides a more parsimonious model than PCR. The PCR calculates factors in
decreasing order of Xcal-variance described. Consequently, the first factors calcu-
lated, that have the least imbedded errors, are not necessarily most useful for
calibration. On the other hand, the first few PLS factors are generally most cor-
related to concentration. As a result, PLS achieves comparable calibration accu-
racy with fewer loading vectors in the calibration model. This further results in
improved calibration precision because the first factors are less prone to
imbedded errors than are lower variance factors.

Second, the PLS algorithm is often faster to implement and optimize for a
given application than is the PCR algorithm. The PLS calculates the factors one
at a time. Hence, only the loading vectors needed for calibration are determined.
The PCR, employing the singular value decomposition, calculates all possible
loading vectors for Xcal prior to regression. For large data sets that require rela-
tively few factors for calibration, PLS can be significantly faster than PCR.
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PLS extracts iteratively as much variance form Xcal as it can correlate to the
response variable values ycal. The explained information is subtracted from Xcal

and ycal—the residuals enter the next iteration step then. Since every iteration
operates on the residual of the previous step, the extracted loading vectors are
mutually orthogonal to each other (the section Supplementary Topics). The
PLS determines a calibration model for every response variable indepen-
dently—if there are several response variables to be predicted, the algorithm pre-
sented in the following has to be run the several times using the ycal vectors one
after the other.

Calibration. The iterative PLS calibration algorithm is presented first
followed by a step-by-step discussion of it.

The following discussion explains how the hth iteration works:

1. Initialization of the algorithm with the mean centered (see section Data
Pretreatment—Mean Centering and Scaling) original data Xcal and ycal.

2. Determine a loading vector ŵwh, which is used to estimate the scores t̂th. This
is done in such a way that as much variance of Xcal (for h¼ 1) or the remain-
ing residuals Eh�1 (for h> 1) is extracted as can be explained by the re-
sponse variable ycal (for h¼ 1) or the remaining residuals eh�1 (for h> 1).
For h¼ 1, PLS is a CLS [(the section Classical Least Squares versus In-
verse Least Squares), especially equation 37 for M¼ 1 with Xcal¼Acal

Model Least-squares estimate

1. initialization: E0 ¼ X(K�N )
cal and e0 ¼ y

(mean centered, see sec-
tion Data Pretreatment—
Mean Centering and
Scaling) h¼ 1 iteration
counter

2. determine a weight
loading vector wh

(new predictor
variable vector):

Eh�1 ¼ eh�1 �wT
h þ �E

ŵwh ¼ ET
h�1 � eh�1 � ðeTh�1 � eh�1Þ�1

3. normalize ŵwh: ŵw ¼ ŵw
kŵwk2

4. determine the
corresponding
scores vector th:

Eh�1 ¼ th � ŵwT
h t̂th ¼ Eh�1 � ŵwh ðŵwT

h � ŵwhÞ�1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼1

t̂th ¼ ET
h�1 � ŵwh

5. relate scores to
residues of the
response variable
eh�1:

eh�1 ¼ t̂th � vh þ �e v̂vh ¼ ðt̂tTh � t̂thÞ�1 � t̂tTh � eh�1

6. determine a
loading vector bh

Eh�1 ¼ t̂th � bT
h þ �E b̂bh ¼ ðt̂tTh � t̂thÞ�1 � t̂tTh �Eh�1

7. determine new
residues Eh ¼ Eh�1 � t̂th � b̂bT

h eh

¼ eh�1 � v̂vh � t̂th
8. if jjehjj2<min, then

R¼h else h!hþ 1
END go to step 2
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and ycal¼Ccal
ðK�M¼ 1Þ] and there is actually a physical meaning for ŵwh:

PLS estimates the pure component—in spectroscopic applications this
would be the pure component or more precisely molar extinction spectrum,
ie, e(l) (eq. 7). This function of wavelength e(l) should not be confused with
the residual vector eh used in the PLS algorithm above. This estimation,
however, will be poor if more than one analyte is contained in the calibra-
tion samples. The following iterations extract correction terms.

3. Normalize ŵwh to get an orthonormal basis, this simplifies step 4 and gives
every vector the same weight during evaluation.

4. Now the scores th for ŵwh are determined describing how strong ŵwh are
present in Eh�1. ŵw1 estimates the pure component spectrum in the afore-
mentioned spectroscopic application; t1 is a first order approximation of the
calibration concentrations.

5. This step the equivalent to equation 41 in PCR: Relate the scores to chemi-
cal meaningful items, concentrations, eg—or more precisely the hth contri-
bution to the concentrations.

6. Now the loading vectors ŵwh have to be ‘‘updated’’ to bh incorporating how
much of the response variables (concentrations) have actually been ex-
plained by the scores. The parameter ŵwh could not be used in step 4 as final
loading vector since the scores t̂th had to been estimated first. The difference
between th and t̂th makes this step and the definition of bh necessary.

7. Subtract the extracted and explained information from the residues of the
previous step.

8. The algorithm is aborted, if, eg, all information on the calibration’s
response variable is explained. Otherwise a new iteration is started.

Prediction of Unknown Samples. The prediction algorithm for unknown
samples is initialized with the mean-centered predictor and response variables.
Then the sample is projected onto the ŵwh loading vectors in order to estimate the
scores value th

meas. By means of the constant v̂vh relating scores and response
variable a back transformation is done from the scores representation to physical
meaningful objects, concentrations for instance. Step by step the wanted
response variable y is updated to the final value. The prediction algorithm has
the same number of iterations as the calibration.

1. initialization
emeas
0 ¼ xmeas � �xxcal and ymeas ¼ �yycal

h ¼ 1 iteration counter

2. project the residues of the
unknownpredictor variable vector
onto the new predictor variable
vector:

tmeas
h ¼ ŵwT

h � emeas
h�1

3. update the estimate of the
response variable: yh ¼ yh�1 þ v̂vh � tmeas

h

4. determine a new residual of the
predictor variable vector: eh ¼ eh�1 � b̂bh � tmeas

h

5. h!hþ 1
6. if h�R, go to step 2 else END
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3.4. Model Selection. As stated in the sections Principal Component
Analysis and Principal Component Regression and Partial Least Squares, the
most difficult part of PCR and PLS is to determine the dimension R of the cali-
bration model. The singular values sK (eq. 2) arranged in decreasing order could
be used at least for PCR. As was stated in the section Notation and Fundamental
Mathematical Tools, there are R singular values unequal to zero. However, due
to the noise no singular value is exactly zero except if mean centering was
applied since a degree of freedom was lost. In that case the last one is zero. In
most applications the singular values drop to very small values belonging to non-
significant PCs with a more or less pronounced step. Plotting these singular
values can help to get a first guess at least. But this works only in limited
cases and often a more sophisticated method is needed.

Usually cross-validation (1) is applied that excludes one of the calibration
samples for determining the number R of significant PCs. This is done by includ-
ing iteratively more PCs and estimating the values of the response variables.
Since the true value(s) ycal or ycal are known for this excluded calibration sam-
ples, the estimated value(s) ŷcal or ŷcal can be compared to the true values. The
procedure of excluding a calibration sample and estimate its response variable(s)
is done for all calibration samples successively. The number of PCs achieving the
closest estimates is chosen for future evaluation.

If a sufficient quantity of calibration samples is available, the best method
for selecting and validating a model is to divide the calibration set into three sub-
sets. One set is employed to construct all of the models to be considered. The sec-
ond set is employed to choose the best model in terms of accuracy and precision.
The third set is employed to estimate the performance of the chosen model on
future data. There are three statistics often employed for comparing the perfor-
mances of multivariate calibration models: root-mean-squared error of calibra-
tion (RMSEC), root-mean-squared error of cross-validation (RMSECV), and
root-mean-squared error of prediction (RMSEP). All three method are based on
the calculated root mean squared error (RMSE)

RMSE ¼
XK
k¼1
ðycalk � ŷycalk Þ2

�
K

 !1=2

ð43Þ

where RMSEC, RMSECV, and RMSEP differ in the determination of ŷcal. The
best estimate of future performance of a calibration model is the RMSEP. Esti-
mates ŷcal in the RMSEP are determined by applying the calibration model to a
subset of data that was not employed in determining the model parameters. The
RMSEP may be calculated for a ‘validation set’ in order to determine the optimal
number of factors in a model or to a ‘test set’ in order to test the performance of
the optimal model on future data. If an external subset of data is not available to
optimize the calibration model, the RMSEP can be estimated by the RMSECV.
The concentration estimates of equation 43 are determined in cross-validation.
RMSEC is a measure of how well the calibration model fits the calibration set.
This is potentially the least informative of the three statistics. The RMSEC is
an extremely optimistic estimation of the model performance. In the limit, if
every factor were included in the calibration model, the RMSEC would be zero.
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Hence, RMSEC is always decreasing with number of factors. As more factors are
included in the calibration model, the model begins to fit the random errors
imbedded in the spectra and concentrations. Therefore, the RMSEC will always
decrease as more factors are added. However, new samples not included in the
calibration set will have a different realization of random errors. Therefore, the
calibration model will not fit these errors to the same degree as the errors in
the calibration set. When extra factors that mostly describe random errors are
included in the calibration model, these factors will introduce the errors in future
samples and the RMSECV and RMSEP may increase. Therefore, RMSECV is a
better estimate of future performance of model prediction than is RMSEC. This
so-called overfitting is well described for PCR in reference 25—similar facts
apply to PLS.

The performances of the three statistics are evident in Figure 11a–d pre-
senting the RMSEC, RMSECV, and RMSEP versus number of factors for PLS
calibration of moisture, oil, protein, and starch, respectively. All spectra were
preprocessed by MSC and mean centered. The optimal number of factors may
be estimated by statistical tests applied to the RMSE, choosing the first minima
in the plot, or choosing the global minimum in the plot (3).

Unfortunately, it is often difficult to obtain reliable calibration samples,
which are hence too valuable for testing the calibration model only. Furthermore,
the dimension of a calibration model defined cross-validation is fixed and cannot
be adjust to certain data. Hence, for spectroscopic applications a fine-tuning

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3
(a)

(b)

(d)

(c)

0.35

Number of Factors

R
M

S
E

Cal. Fit RMSEC
X-val RMSECV
Val. Set RMSEP

Cal. Fit
X-val
Val. Set

0 5 10 15
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of Factors

R
M

S
E

Cal. Fit RMSEC
X-val RMSECV
Val. Set RMSEP

Cal. Fit
X-val
Val. Set

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Factors

R
M

S
E

Cal. Fit RMSEC
X-val RMSECV
Val. Set RMSEP

Cal. Fit
X-val
Val. Set

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Factors

R
M

S
E

Cal. Fit RMSEC
X-val RMSECV
Val. Set RMSEP

Cal. Fit
X-val RMSECV
Val. Set

Fig. 11. Plots of RMSEC, RMSECV and RMSEP for prediction of (a) moisture, (b) oil,
(c) protein, and (d) starch from NIR spectra of cornflour samples.
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approach was proposed (32) adjusting the number of used PCs to every measure-
ment spectrum individually. This method can be extended to other multivariate
data sets, too. By means of this method no valuable calibration data must be
excluded for testing purposes and the calibration model is flexible. In general,
there are three types of PCs: Primary PCs are the most important ones modeling
the major and true spectroscopic features in a spectrum. The secondary PCs are
needed for correcting imperfect measurements like drifts (33) or washed out fea-
tures (22). Tertiary PCs are due to noise and should not be included into the cali-
bration model to prevent overfitting (25). Starting with one PC the number of
PCs is increased stepwise by one. This defines a reduced model. The variance
of the residual spectrum obtained at every step of this iteration is F-tested
against the variance of the residual spectrum obtained with full model including
all PCs. The number of PCs is increased until the F-test cannot find significant
differences between the restricted and full model. At that point both methods
have the same predictability. By means of this the algorithm reduces overfitting
and still extracts all relevant information. By means of synthetic data it was pro-
ven that the algorithm selects the correct number of PCs, if noise level is reason-
able and if sufficient calibration samples are provided. This fine-tuning of the
calibration model could also be applied advantageously to different experimental
spectra sets.

3.5. Target Factor Analysis. As mentioned in the section Calibration,
the principal components (PCs) derived from PCA do not necessarily describe
single, physically meaningful, effects. That is, while a set of data may consist
of the NIR spectra of hydrocarbon mixtures, the PCs of the data set are not con-
strained to be NIR spectra of the constituent hydrocarbons. However, the multi-
variate space defined by the principal components is the same as the
multivariate space defined by the pure (true) spectra of the chemical constituents
of the data set plus any other forms of systematic variance. The difference is the
basis (see last paragraph in the section Calibration) used for representation: The
PCs are rotated versions of the pure component spectra. Target factor analysis
(TFA) is a method of testing whether the spectrum of a hypothesized chemical
constituent, as defined by an assumed or recorded spectrum, lies in the PC
space of the model. If the hypothesized constituent does lie in the PC space,
the associated spectrum xmeas can be expressed as a linear combination of the
PCs [rows of PT

(R�N) (eq. 40)]:

xmeas ¼ P � t ð44Þ

The coefficients of the linear combination are the scores t of xmeas. t can be cal-
culated by regressing, i.e. projecting, the target spectrum, xmeas, onto the ortho-
normal PCs PT:

t̂t ¼ ðPT �PÞ�1 �PT � xmeas ¼ PT � xmeas

x̂xmeas ¼ P �PT � xmeas

ð45Þ

Whether xmeas lies in the vector space spanned by the PCs is tested by comparing
xmeas with x̂xmeas. If xmeas and x̂xmeas are determined to be sufficiently similar by a
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statistical or empirical test (3), xmeas is an element of the PCs vector space. If
xmeas is not a member of this vector space, the regression [first line in equation 45]
estimating t determines a wrong vector t̂t. In return, x̂xmeas will be significantly
different from xmeas. Analogous equations can be constructed that project sample
targets onto the scores T (eq. 40) of Xcal. Recently, methods had been developed
which extracts the parts of xmeas causing it not being an element of the PC vector
space (34,35). Such algorithms can be applied to analyze unknown spectra qua-
litatively for detecting and correcting of uncalibrated interferences.

3.6. LocallyWeighted Regression. The global linear models calculated
by PCR or PLS are not always the best strategy for calibration. Global models
span the variance of all the samples in the calibration set. If the data are non-
linear, then the linear PCR and PLS methods do not efficiently model the data.
This happens for instance, if a linear Beer’s law (eq. 7) type relationship between
predictor variables (spectra) and response variables (predicted chemical proper-
ties) does not hold. One option is to use nonlinear calibration methods employing
a global, nonlinear model (the section Nonlinear Methods). The second option is to
employ linear calibration methods on small subsets of the data. The locally
weighted regression (LWR) philosophy assumes that the data can be efficiently
modeled over a short span with linear methods (36–40). The first step in LWR
is to determine the Q calibration samples that are most similar with the unknown
sample to be analyzed. Similarity can be defined by distance between samples in
the spectral space (38), by projections into the principal component space (39), and
by employing estimates of the property of interest (40). Once the Q nearest stan-
dards are determined, either PLS or PCR is used to calculate the calibration
model. The LWR has the advantage of often employing a much simpler and
more accurate model for estimation of a particular sample. However, there are
three disadvantages associated with LWR. First, two parameters must be opti-
mized for LWR, number of local samples and number of factors, compared to
only the latter one for PLS and PCR. Second, a new calibration model must be
determined for every new sample analyzed. Third, LWR often requires more sam-
ples than PCR or PLS in order to build meaningful, local calibration models.

3.7. Nonlinear Methods. There are numerous nonlinear, multivariate
calibration methods described in the chemometric literature. These methods
can be divided into two classes. Alternating Conditional Expectations (ACE)
(41,42) and Projection Pursuit (PP) (43) seek to transform the nonlinear data
such that a linear calibration model is appropriate. Similarly, Global Linearizing
Transformations (GLT) is employed to optimally linearize data prior to factor
analysis by PCA (44,45). On the other hand, nonlinear-PLS (NPLS) (46,47). Mul-
tivariate Adaptive Regression Splines (MARS) (48,49) and Artificial Neural
Networks (ANN) (50) determine nonlinear global models that span the entire
range of samples. While impossible to provide sufficient detail for each method
in this section, some general comments regarding the application of these non-
linear methods are warranted.

Specific nonlinear methods have been compared and contrasted over a
wide variety of linear and nonlinear calibration applications (51–53). No single
method has demonstrated systematic superiority to the other methods. The
safe conclusion is that calibration method superiority is application dependent
(54,55) When the underlying type of nonlinearity implicit in the calibration
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method matches the latent nonlinearity in the data, the method will optimally
model the data. This assertion has been supported by the improvement in
calibration performance when theoretical instrument response functions replace
the sigmoid transfer function in ANN calibration (56).

Nonlinear methods are much more prone to ‘‘over-fitting’’ the calibration
model than linear approaches. Overfitting occurs when the calibration begins
to employ random variance (instrumental errors) for determining calibration
parameters. The flexibility of the nonlinear models and the relatively large num-
ber of parameters that need to be estimated are the primary cause for this phe-
nomenon. Consequently, the more complicated the model, the more prone the
method is to overfitting (ie, ANN vs. PCR). A decision tree based on Occums
Razor has been proposed to aid chemists in choosing among the nonlinear meth-
ods) (54) Linear and nonlinear calibrations were linked in a hierarchical web.
The hierarchy is based on nested models and degrees of freedom required to cal-
culate the model. Simple, linear models are at the top of the hierarchy; complex,
nonlinear methods are at the bottom. It is recommended that to guard against
overfitting and spurious modeling of the data, the method nearest the top of
the hierarchy that provides sufficient calibration reliability for the application
be employed. That is, use the simplest model that works.

3.8. Multivariate Curve Resolution (MCR). Where TFA (the section
Target Factor Analysis) allows the analysis to test for the presence of a hypothe-
sized constituent, TFA is limited in the ability to estimate the spectral profile of
any constituents in the data set. This is due to the fact that TFA requires that
the spectral profile of the target is available for target testing. If the profile is
unavailable, TFA cannot be performed. On the other hand, multivariate curve
resolution (MCR) methods allow for the estimation for both the hypothesized
and unknown constituents in the data matrix, ie, spectral or chromatographic
profile of the separated constituent as well as concentration profiles. Usually
MCR techniques are applied in spectroscopy and chromatography. The rotational
ambiguity of the decomposition in (eq. 40) is circumvented by making assump-
tions regarding the nature of the true constituent spectral profiles and sample
profiles. These assumptions are translated into constraints applied to the itera-
tive factorization of Xcal. Once additional constraints are applied to the factors of
Xcal, the factors are not true principal components. These factors are properly
described as intrinsic factors, but not PCs.

Numerous constraints have been applied to the iterative factorization of
Xcal in order to enhance the probability that the determined factors will be phy-
sically meaningful. Perhaps, the most common constraint is nonnegativity of
estimated spectral and sample profiles (57–68). This constraint is based on the
common sense notion that the factorization of A¼Xcal (eq. 36) (see section Clas-
sical Least Squares versus Inverse Least Squares) should lead to positive esti-
mates of extinction coefficients or unit spectra (rows of K) and concentrations
Ccal. In neither case would the true profile likely contain negative values.
Another common spectral constraint employs assumptions regarding the content
of Xcal. If the spectral profile of one or more of the assumed chemical constituents
is known, the factorization of A¼Xcal can be constrained to contain the assumed
spectral profiles in the solution. It is also possible to employ assumptions regard-
ing the interrelationship among the samples.
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For resolving overlapping chromatographic peaks, Gaussian or unimodal
elution profiles are assumed for the rows of Xcal (60,62,63) ie, there is for sure
only one maximum in the chromatogram. Concurrently, the presence of samples
that contain only one compound may be successfully postulated for chromato-
graphic or kinetic data (62,64). This is referred to as the ‘‘uniqueness’’ constraint.
If the concentration of one or more compound is known in any of the particular
sample, the resolved profiles can be constrained to reflect this information. For
kinetic data, the sample profiles can be constrained to fit a class of differential
equations that reflect the postulated reaction pathway (65,66). The validity of
the assumed reaction can be tested based of the ability of the data to fit this
model.

Of course, application of other constraints and the combination of multiple
constraints are possible. The constraints resulting from these assumptions are
particularly powerful when well-ordered data, such as kinetics or chromato-
graphic data, are analyzed. Constraining does not ensure that physically mean-
ingful profiles will be determined. In general, application of constraints only
reduces the range of feasible solutions where, ideally, the true profiles will lie
within this range. The more constraints properly applied to the decomposition,
the tighter the estimated range of profiles will resemble the true profiles. How-
ever, if a constraint is improperly imposed the estimated profiles will yield erro-
neous profiles, for instance if nonnegativity when in fact the profile should have
negative values.

Practically, iterative MCR methods are capable of resolving spectra and
concentrations from complicated, multianalyte mixtures without a priori infor-
mation aside from constrains. Iterative MCR methods employ the bilinear
factorization model

AðK�NÞ ¼ CðK�MÞ �PT
ðM�NÞ þ EðK�NÞ ð46Þ

where the K mixture spectra or chromatograms are written in the rows of A. The
rows of C contain the analyte concentrations for the samples, rows of PT hold the
spectral or chromatographic profiles of the pure single analytes at unit concen-
tration, E is the residuals matrix.

C and PT are estimated by an alternating least squares (ALS) (67,68) algo-
rithm: This algorithm starts with an estimate of either C or PT. Assuming ĈC is
employed for initialization, estimates of the spectral profiles are calculated based
on MLR (the section Multivariate Linear Regression). Either a constrained least-
squares fit is employed or the constraints are imposed after P̂PT is calculated
directly by least squares:

P̂PT ¼ ðĈCT � ĈCÞ�1 � ĈCT �A ð47Þ
or utilizing the pseudoinverse (see section Notation and Fundamental Mathema-
tical Tools and Supplementary Topics) when necessary

P̂PT ¼ ĈCþ �A

If, eg, nonnegativity is applied, all negative entries of P̂PT are set to be zero. Once
the constrained estimate of P̂PT is calculated, P̂PT is employed to update the
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estimate of ĈCT. As with calculating P̂PT, constraints can be imposed during the
calculation of ĈCT by a constrained least squares method, or after the estimation
of ĈC by ordinary least squares

ĈC ¼ A � P̂P � ðP̂PT � P̂PÞ�1 or ĈC ¼ A � P̂Pþ ð48Þ

The method iterates by alternating calculating constrained updates of P̂PT (eq. 47)
and ĈC (eq. 48) back and forth until further refinement does not significantly
change the model.

3.9. Outlier Detection. Two important statistics for identifying outliers
in the calibration set containing K samples are the ‘‘sample leverage’’and the
‘‘studentized residuals’’. A plot of leverage versus studentized residuals makes
a powerful tool for identifying outliers and assigning probable cause. The sample
leverage is a measure of the influence, or weight, each sample has in determining
the parameters of the calibration model. Samples near the center of the calibra-
tion set (average samples) will have a relatively low leverage compared to sam-
ples at the extreme edges of the experimental design and outliers. The sample
leverage is determined by

hk ¼ 1=K þ uT
k � uk ð49Þ

where uk is the row of associated matrix U (eq. 40) with the R significant princi-
pal components for the kth sample. Consequently, the sample leverage ranges
from 0 for a sample in the center of an infinitely large calibration set to 1 for
an extreme sample in a small data set.

The studentized residual is an indication of how well the calibration model
estimates the analyte property in each sample. The studentized residual is simi-
lar to the Student’s t-statistic; the estimation error of each sample is converted to
a distance in standard deviations away from zero. An additional term is often
added to the calculation to correct for the weight each sample has in determining
the calibration model. The studentized residual is increased for samples with a
large leverage; this is known as the studentized leverage corrected residuals. The
studentized leverage corrected residuals are calculated by

tk ¼ jck � ĉckj
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hk

p ð50Þ

where

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1
ðck � ĉckÞ2

K � R� 1

vuuut
ð51Þ

with R being the number of PCs in the calibration model.
The plot of studentized leverage corrected residuals versus sample leverage

provides insights into the quality of each calibration sample (Fig. 12). Samples
with low leverages and low studentized residuals are typical samples in the
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calibration set. Data in the green region are generally ‘‘good’’ data and there is
little statistically valid reason to remove any of these data. Data in the far-left
and -right yellow regions have large fit errors and small leverages. These points
are suspect in that they may have concentration errors or be mislabeled. Data in
the upper yellow region are suspect due to spectral anomalies, but might have a
high leverage just because they have an extreme concentration. Data in the red
regions are most likely to be bad and should probably be removed.

4. Multiway Analysis

4.1. Introduction. Multiway analysis became popular in the late 1970s
in the psychometric literature. Psychologists employed the multiway models
primarily for factor analysis in order to determine intrinsic factors in large, com-
plex data sets. However, as chemical instrumentation advanced with automated
data collection, chemists began to acquire large, multiway data sets. In 1980,
Hirschfeld listed 66 instruments capable of generating multiway data (69).
Geladi cataloged the manners in which multiway data can be collected in chemi-
cal applications (12). Since a different notation has been defined in literature for
multiway analysis compared to bilinear chemometrics the standard multivariate
notation will be used in this section.

There are six classes of three-way data and four of these classes can be
appropriately modeled with the basic trilinear, or PARAFAC (PARAllel FACtor
analysis) (70–72) model. The PARAFAC decomposes the data cube (Figs. 1, 13)
into N sets of triads, x̂x, ŷ, and ẑz (see right part of Fig. 14). The elements of a tri-
linear I�J�K data cube R can be presented as

Ri;j;k ¼
XN
n¼1

Xi;n � Yj;n � Zk;n þ Ei;j;k ð52Þ
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Fig. 12. Leverage-studentized residuals plots can be used to determine suspect data
points.
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Here, N refers to the rank of the model, ie, number of factors employed by the
model. The parameter N must be determined (73) by the user before the algo-
rithm is started. The residual data cube E contains the errors, which cannot
be modeled.

To give an example: PARAFAC was used in combination with excitation–
emission matrix (EEM) spectroscopy (74–76). The EEM spectroscopy uses a
broadband light source usually in the uv–vis range to excite naturally fluores-
cent analytes, eg, aqueous solution of pesticides and polycyclic aromatic hydro-
carbons. By means of two perpendicular spectrographs the excitation and
emission spectra are projected in a perpendicular fashion onto a focal plane
array (FPA). In other words, emission spectra measured after excitation at dif-
ferent wavelength are measured by the rows the FPA. The 2D I�J EEM spectra

Fig. 13. The Tucker3 model (the section Tucker3 Models) is a generalization of the PAR-
AFAC model (the section Multiway Curve Resolution—PARAFAC/CANDECOMP). The
Tucker3 model decomposes the data cube into three sets of spectral and concentration pro-
files, like the PARAFAC model. However, the Tucker3 model additionally employs a core
cube C that governs the mixing between the three spectral and concentration profiles. If
the core matrix is all zeros except for having ones along the superdiagonal, the Tucker3
model reduces to the PARAFAC model.

Fig. 14. Pictorial representation of collection of data as it can be factored into pure spec-
tral and concentration profiles by PARAFAC.
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obtained from K different samples are stacked to form a three-way data set R
(Fig. 14). The PARAFAC is applied then in order to extract the excitation spectra
X, the emission spectra Y, and the concentration profiles Z of the analytes from
R. Since the results are unique to a scaling factor (see discussion below), the exci-
tation and emission spectra of the analytes are normalized to area one; the con-
centrations or multiplied then with the inverse of the spectra scaling factors.
Another example would be obtaining a data cube from a LC-uv/vis device.
Each x̂xn would correspond to one of the true N chromatographic profiles, each
ŷyn to one of the true spectroscopic profiles, and each ẑzn to the relative concentra-
tions in the K samples.

In general, the number and form of factors are not constrained to be repre-
sentative of any physical reality. With two-way factor analysis, PCA, this is often
referred to as the rotational ambiguity of the factors; there is a continuum of fac-
tors that satisfy the PCA model and equivalently describe the data. This is dif-
ferent for three-way analysis. If the following four conditions are given, the
factors x̂x, ŷy, and ẑz of a chemical component are accurate and unique estimates
of the true underling factors x, y, and z except for a scaling constant:

1. The true underlying factor in each of the three modes is independent from
the state of the other two modes.

2. The true underlying factor in any of the three modes cannot be expressed
by linear combinations of the true underlying factors of other components
in the same mode.

3. Linear additivity of instrumental responses among the species present is
given.

4. The proper number of factors N is chosen for the model.

4.2. Multiway Curve Resolution—PARAFAC/CANDECOMP. PAR-
AFAC is originally based on the work of Kroonenberg (77) and as CANDECOMP
(canonical decomposition) on the work of Harshman (78). In either case, the two
base algorithms are practically identical. The PARAFAC uses an alternating
least squares (ALS) based algorithm for multivariate curve resolution (the sec-
tion Multivariate Curve Resolution) applied to three-way data sets.

The PARAFAC/CANDECOMP algorithm (79) stores iteratively improved
estimates for the X-way, Y-way, and Z-way information in matrices X(I�N),
Y(J�N), and Z(K�N). Before the algorithm is presented, six additional matrices
have to be defined. Three of which (RA,RB,RC) contain elements ofR and remain
unaltered—A, B, and C will be updated in each iteration step. To keep this dis-
cussion concise, these definitions are formally introduced beforehand:

� RC
(I � J�K) is a matrix constructed by unfolding the K slices of R in the

XY-plane containing the elements

RC
ð j�1ÞIþi;k ¼ Ri; j;k

� C(I�J�N) is formed from the N columns of X̂X and ŶY with elements

Cð j�1ÞIþi;n ¼ X̂Xi;n � ŶYj;n ð53Þ
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� RB
(I�K�J) is a matrix constructed by unfolding the J slices of R in the XZ

plane containing the elements

RB
ðk�1ÞIþi; j ¼ Ri; j; k

� B(I�K�N) is formed from the N columns of X̂X and ŶY with elements

Bðk�1ÞIþi;n ¼ X̂Xi;n � ŶYj;n ð54Þ

� RA
(J�K� I ) is a matrix constructed by unfolding the I slices of R in the YZ

plane containing the elements

RA
ðk�1ÞJþj;i ¼ Ri; j; k

� A(J�K�N) is formed from the N columns of Ŷ and ẐZ with elements

Aðk�1ÞJþj;n ¼ ŶYj;n � ẐZk;n ð55Þ

Step 0: Initial guess of the X and Y starting profiles—this can be random
numbers (80), or an eigenproblem based algorithm like the Direct Trilinear
Decomposition (DTLD) (81), or a priori information about the samples. From
these two matrices the Z(K�N) profiles will be calculated in Step 1 of the
algorithm.

Step 1: Employing equation 53, updated estimates of the Z-way data are
determined by solving:

RC ¼ C � ZT

This is done by a multivariate least-squares fit (eq. 30) (the section
Multivariate Linear Regression) ẐT¼ (CT �C)�1 �CT �RC or by using the
pseudoinverse (eq. 5) (the section Notation and Fundamental Mathematical
Tools):

ẐZT ¼ Cþ �RC ð56Þ
In the remainder only the pseudoinverse will be mentioned.

Step 2: Employing equation 54 updated estimates of the Y-way data are
determined by solving:

RB ¼ B �YT

ŶYT ¼ Bþ �RB

ð57Þ

Step 3: Employing equation 55 updated estimates of the X-way data are
determined by solving:

RA ¼ A �XT

X̂XT ¼ Aþ �RA

ð58Þ

Step 4: Update A, B, and C by using the new estimates X̂X, ŶY, and ẐZ in
equations 53–55, respectively.
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Step 5þ: The algorithm proceeds iteratively, cycling through equations
56–58, until the convergence criterion is satisfied.

Two more topics remain to be discussed: The initialization of X and Y
(Step 0) as well as the stopping criterion of the iteration (Step 5).

The PARAFAC algorithm is sensitive to the starting guess of the solution
for X̂X and ŶY. This results from PARAFAC often becoming trapped in local
minima and, hence, not converging to the global optimum least squares solution.
Furthermore, the PARAFAC algorithm can become delayed in ‘‘swamps’’ far from
the optimum solution (82). Although this markedly increases the analysis time,
when employing a random starting value, multiple initial guesses should be con-
sidered. The solution for each starting value will be different; however, if all or
most of the solutions are similar, it is safe to assume that PARAFAC has con-
verged to near the global optimal solution. The convergence time for PARAFAC
can be improved by initializing the algorithm with guesses near the optimal solu-
tion. These guesses can come from DTLD or reference spectra of species either
known or highly suspected to be in the data set. Care should be employed
when utilizing the DTLD solutions since DTLD often yields significant imagin-
ary components in predicting X- and Y-way factors. The problems caused by initi-
alizing PARAFAC with imaginary components can be circumvented by
employing the real components of X̂X and ŶY from DTLD or the absolute values
of X̂X and ŶY from DTLD.

Two popular convergence criteria for the PARAFAC algorithm are based on
changes in the residuals (unmodeled data) between successive iterations and
changes in the predicted profiles between successive iterations. In the first
case, the algorithm is terminated when the root average of the squared residuals
between successive iterations agree to within an absolute or relative tolerance,
say 10�6. While such fit based stopping criteria are conceptually easy to visua-
lize, a faster method for determining convergence relies on the correlation
between the predicted X-, Y-, and Z-way profiles between successive iterations.
When the product of the cosines between successive iterations in the X-, Y-, and
Z-modes approach arbitrarily close to 1, say within 10�6, the algorithm is
terminated. The cosine in the X way is determined by unfolding the I�N
matrices X̂Xold and X̂Xnew into a column vectors x̂xold and x̂xnew. The cos yX is defined
as

cos �X ¼ xoldxnewffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxoldxoldÞðxnewxnewÞ
p ð59Þ

The other two terms, cos yY and cos yZ are defined equivalently. Convergence in
all three modes is implied, if

cos �X � cos �Y � cos �Z > 1� 10�6

since at least cos y>1–10�6 is obtained for all X, Y, and Z ways.
Mitchell and Burdick sight, besides speed, an additional benefit to correla-

tion based convergence (82). In cases when two factors are highly correlated in
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one ore more of the three ways, ALS methods may become mired in ‘‘swamps’’
where the fit of the model changes slightly but the correlation between the pre-
dicted X, Y, and Z ways change significantly between successive iterations. After
many iterations the ALS algorithm will then emerge from the ‘‘swamp’’ and the
residuals and estimated profiles will then both rapidly approach the optimum.
Hence, correlation based convergence is more resistant to inflection points in
the error response surface when optimizing the model.

4.3. Tucker3 Models. The generalization of the PARAFAC model is the
Tucker3 model (83,84). The PARAFAC model is intrinsically linear model and
straightforward application thus assumes linear interactions and behavior of
the samples. While many of the systems of interest to chemists contain nonlinea-
rities that violate the assumptions of the models, the PARAFAC model forms an
excellent starting point from which many subsidiary methods are constructed to
incorporate nonlinear behavior into calibration models constructed from three-
way data collected with hyphenated methods. The trilinear model is actually a
specific case of the Tucker3 model. The Tucker3 model is best understood by
viewing a graphical representation such as in Fig. 13. A data cube R is decom-
posed into three sets of factors, x̂x, ŷ, and ẑẑz, as with PARAFAC. However, the
Tucker3 model differs from the PARAFAC model in two key ways. The number
of factors N in each way of the Tucker3 model is not constrained to be equal. Also,
the Tucker3 model employs a small core cube, C, that governs the interactions
among the factors. A non zero element at the pth, qth, rth position of the core
C dictates an interaction between the pth factor in the X way, the qth factor
in the Y way, and the rth factor in the Z way. This permits modeling of two or
more factors that might have, eg, the same chromatographic profile but different
spectral and concentration profiles (85,86). If there are the same number of fac-
tors in each way, and C is constrained to only have nonzero elements on the
super diagonal, then the Tucker3 model is equivalent to the PARAFAC model.

One alternating least-squares algorithm for estimating the parameters of
the Tucker3 model is Tuckals (for TUCK Alternating Least Squares). This itera-
tive Tuckals algorithms proceeds similarly to the PARAFAC/CANDECOMP algo-
rithm except instead of cycling through three sets of parameters, four sets of
parameters must be successively updated, X̂X, ŶY, ẐZ, and C. However, where
with PARAFAC just the number of factors in the model N needs to be preas-
sumed, with Tucker3 the three dimensions of the core array P, Q, and R, need
to be assumed.

4.4. Solution Constraints. ALS algorithms are more flexible than rank
annihilation based algorithms (87) since constraints (cf. the section Multivariate
Curve Resolution) can be placed onto the solutions derived from ALS methods.
The ALS algorithms implicitly constrain the estimated profiles to lie in the
real space. Rank annihilation methods may fit factors with imaginary compo-
nents to the data. Ideally, constraints are not needed for ALS to achieve accu-
rate, meaningful concentration and spectral profile estimates. However, the
presence of slight nonlinear interactions among the true underlying factors, of
highly correlated factors, or of low signal to noise in the data will often result
in profile estimates that are visually unsatisfying and large quantitative errors
are derived from the model. These effects can often be minimized by employing
constraints to the solutions that are based on a priori knowledge or assumptions
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of the data structure, eg, prior knowledge of sample concentrations or spectral
profile characteristics.

Perhaps the most common constraint consciously placed on the PARAFAC
or Tucker3 models is nonnegativity. When one of the modes represents concen-
trations, chromatographic profiles, or in many cases spectra, constraining the
solutions to yield only nonnegative profile estimates often improves the quanti-
tative and qualitative accuracy of the models. Care should be taken when apply-
ing nonnegativity constraints since some spectral effects, such as absorbance and
quenching in fluorescence, can be manifested, detected, and modeled as negative
profiles. Nonnegative estimates of the three-way profiles can be obtained by
replacing the least squares update of any given profile with the nonnegative
least squares (NNLS) solution that is well defined in the mathematics literature
(88). The method described in Ref. 88 is readily available as a Matlab function.
The downside of this method is that it is numerically intensive compared to com-
puting the regular least-squares solution for each update.

A second constraint often applied in three-way calibration of chromato-
graphic data is unimodality. This constraint exploits the knowledge that chroma-
tographic profiles have exactly one maximum. Unlike NNLS, there is now
method to calculate the true unimodal least-squares update during each itera-
tion. Instead a search algorithm must be implemented that finds the maximum
of each profile and assures that from that maximum all values are monotonically
decreasing.

The third common constraint is based on a priori knowledge of the three-
way profiles. In this case, the known relative concentrations of the standards
or the known spectral profiles of one or more components can be fixed as part
of the solution. In the Tucker3 model, it is common to restrict some of the poten-
tial interactions between factors when they are known not to exist. Care must be
employed when applying fixed values to the solutions as the scaling of the factors
must still be taken into account.

5. Selected Topics

5.1. Background Spectrum Correction. Background correction meth-
ods are often employed in spectroscopic applications to remove broad features
from the data set. These features hinder calibration as a large source of variance
compared to the analyte or as a seemingly random source of variance that
consumes many factors in the model. Examples include fluorescence background
in Raman spectroscopy and scattering backgrounds in near-ir reflectance
spectroscopy.

Simple efforts at background correction include derivatives, polynomial
curve fitting, and Fourier Transform (FT) filtering (89). Derivatives remove
the portion of a background that can be modeled by a low order polynomial. Tak-
ing the first derivative of a spectrum removes the baseline offset. The second
derivative removes the linear approximation of the background (and the analyte
signal). However, in spite of digital filters for simultaneously smoothing the data
while calculating the derivatives (90), the S/N rapidly declines with each deriva-
tization. Polynomial curve fitting is useful when there are regions of the spectra
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that contain only background variance. These regions must be distributed across
the entire spectrum such that the background can be modeled. The FT filtering
removes both low and high frequency variance across the spectrum. It is
assumed that the lowest frequency signal is the background and the highest
frequency signal is random instrumental errors. Problems may occur with FT
filtering due to poorly chosen apodization functions applied to the signal or insuf-
ficient ability to distinguish between the signal and the background. This will
lead to distortion of the analyte signal.

Multiplicative scatter correction (MSC) was developed to reduce the effect
of scattered light on diffuse reflection and transmission NIR spectra (91,92). This
method has also shown utility as a means of removing varying background spec-
tra with nonscattering origins. Consequently, MSC sometimes appears as
multiplicative signal correction. The basic application of MSC is presented
here. However, a more advanced version of MSC exists that assumes a unique
scattering model for different regions of the spectra (93).

Scattering theory states that scattering should have a multiplicative effect
on reflection (and transmittance) spectra. That is, the observed spectra will con-
tain a broad, changing background from differential scattering at each wave-
length. In Fig. 15a it is apparent that the largest source of variance within the
NIR reflectance spectra of the 40 cornflour samples is derived from scattering.
Assuming a multiplicative model for the scattering, the scattering profile in a
spectrum can be deduced from a plot of the spectrum of a standard scatterer
versus a given spectrum at each wavelength. And ideal ‘standard’ would have
no NIR absorbance (or transmittance) features; however, the mean spectrum
from a collection of similar samples will suffice. Fig. 15b presents the plot
of the intensity of each wavelength for the mean of 40 calibration spectra versus
two of the individual calibration spectra. Note that one is scattering more than
the average spectrum and one is scattering less than the average spectrum. The
plot for each of these two samples lies about a line with a little variation around
the line. The difference between each sample and the best fit line through each
sample in Figure 15b can be interpreted as the chemical signal and the best
fit line gives the spectrum of the scattering in the sample. Consequently, the
scattering is determined by regressing each spectrum onto the mean spectrum,
where the scattering at the jth wavelength of a sample can be modeled by

xj ¼ aþ b�xx j þ �j ð60Þ

with a and b being constant for all J wavelengths in the sample. The scatter cor-
rected data is determined by the scaled deviations about the regression

xj;MSC ¼ ðxj;raw � aÞ=b ð61Þ

The corrected spectra for the 40 calibration NIR cornflour samples are
shown in Figure 15c. For correction of future samples, the mean of the calibra-
tion set may be employed as the scatter standard. Figure 15d shows the corrected
spectra of 20 cornflour spectra that were not included in the calibration set.
Evident from these figures is that the spectral features are not distorted by
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MSC contrasted to scatter correction by calculating the second derivative of each
spectrum.

A different approach explicitly including drifts into the calibration was pro-
posed to artificially extend the set of PCs with the so-called pseudo PCs (94).
Advantage is taken from the fact that background drifts are usually very
broad compared to the more localized absorption features. These pseudo-PCs
have been defined to be polynomials up to a user selectable order, however,
other linear independent functions could be used, too. It was shown that this
combined set of PCs and pseudo PCs is able to determine considerably improved
concentration results from highly drift affected spectra compared to a conven-
tional PCR. An example utilizing uv derivative spectroscopy of aqueous samples
(95) is given in Figure 16. Several weeks after performing the calibration the
zero-point concentrations of three aromatics hydrocarbons have been monitored
>13 h. Since considerable drifts occurred due to an instable uv light source, the
concentration errors without drift correction equal 10% of the measurement
range. Most of these concentration errors could be removed based on pseudo-PCs.

An alternative (33) to pseudo-PCs utilizes a similar idea: Polynomials are
fitted to the regular PCs and subtracted from them. In this case drift effects,

Fig. 15. Demonstration of multiplicative scatter correction. (a) The major source of var-
iance for the 40 NIR cornflour spectra is due to scattering affecting the spectral baseline.
(b) Relationship between two spectra and the mean of the 40 spectra. (c) MSC applied to
calibration data: corrected spectra are found by the residual of the 40 spectra after regres-
sion against the mean of the 40 spectra. (d) MSC applied to future data: corrected spectra
are found by the residual of the 20 future spectra after regression against the mean of the
40 calibration spectra.
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which can be modeled by polynomials, are orthogonal to the PCs. This is due to
the fact the ‘‘corrected’’ PCs, ie, original PCs minus fit polynomials, are the resi-
duals of these fits. Hence, polynomial like drifts up to the considered order are
orthogonal to the corrected PCs (cf. section 3 in Supplementary Topics, chapter
Multivariate Linear Regression) and cannot influence the concentration results.
The pseudo-PCs method extracts additional information, ie, an estimate of the
drift spectrum. The approach fitting polynomials to the PCs is computational
less expensive since it is done just once during the calibration. This can be advan-
tageous is computation resources are limited.

5.2. Instrument Standardization. One practical concern with multi-
variate calibration and prediction is the transport and stability of the calibration
models. Ideally, a calibration model can be constructed in the laboratory on a
bench-top instrument, then the model can be applied to many similar instru-
ments in the field. Also, once a model is successfully transferred to the field, it
will be robust to changes in instrumental sensitivity and alignment. Of course,
the goal of a universal transferable and robust instrument–model has not been
achieved. Seemingly identical spectrometers have slight wavelength resolution,
and sensitivity differences that can prohibit reliable distribution of the calibra-
tion model among numerous instruments. Also, time-dependent instrumental
drift eventually can render the calibration model obsolete for whichever instru-
ment the model was constructed.

Individual calibration of each instrument is not an acceptable solution to
the problem of model distribution. Calibration may be an expensive, time-
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Fig. 16. Comparing the concentration zero points (input 0 mg/L) of three aromatic
hydrocarbons dissolved in water (measurement range 0–5 mg/L) obtained from uv deri-
vative spectroscopy (22) without and with drift corrections by means of pseudoprincipal
components (94).
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consuming task when many calibration samples are needed, the calibration sam-
ples are not readily transportable, or the instrument is not easily accessible in the
process stream. Concurrently, it is also unacceptable to repeat an entire calibra-
tion procedure whenever there are minor changes in the instrumental character.

Instrumental standardization (96–99) strives to solve the problems derived
from instrumental differences when constructing one calibration model for mul-
tiple instruments. The instrumental standardization philosophy is to construct
the best model possible on one instrument then to build a second model that
will transform the spectra from other instruments to appear as if they were
recorded on the first instrument. Usually, this transfer function can be reliably
calculated with less effort.

One standardization method popular in the literature is Piecewise Direct
Standardization (PDS) (99–102). With PDS, a set of transfer samples is analyzed
on both the original instrument and the instrument to which the calibration
model will be transferred. It is best if the transfer samples are a subset of the
calibration set; however, other surrogate samples may be employed. A separate
transfer function is determined for each wavelength in the spectra by least
squares regression using neighboring wavelengths as the independent variables.
That is, a local subset of variables measured on the second instrument is
employed to build a model that predicts what each measurement would have
been if it were measured with the first instrument. This method accounts for
shifts and intensity changes over a small spectral window. The drawback of
PDS is that success of the standardization is dependent on choice of the transfer
samples. The transfer samples must be identical when measured on each instru-
ment and the set of samples must span the space of all encountered spectral
changes between the two instruments. Therefore, the choice and number of
transfer samples must be optimized by the analyst.

A more useful method of standardization would not require transfer sam-
ples to be analyzed. There have been two approaches to this problem. When it
can be safely assumed that the only spectral shifts (ie, wavelength or retention
time) occur a PCA based method of standardization may be employed (103,104).
The spectral (or time) indexes are shifted such that the projection of each sample
into the PC space defined by the original instrument is optimized. A more gen-
eral method based loosely on MSC has also demonstrated success when there are
relatively minor performance differences between the original and second instru-
ments (105,106). Here a local selection of wavelengths from each spectrum is
regressed against the mean spectrum to build a transfer function. Consequently,
the spectra from the second instrument are not transformed to look like the spec-
tra from the first instrument. Instead, spectral responses from both instruments
are transformed to lie in a common multidimensional space.

5.3. Optical Computation. Most spectrometer concepts include moving
parts like interferometers or scanning gratings. Such moving parts, however,
limit the ruggedness of a field analyzer and the time resolution of the concentra-
tion runs. The strong point of such spectrometers combined with chemometric
software packages is their versatility. For many applications this is not needed,
though. In process analytics, eg, a measurement device is usually applied to one
very specific task not needing versatility at all. Mechanical stability and good
time resolution is of greater importance. In order to overcome both mentioned
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drawbacks it was proposed to design so-called multivariate optical elements
(MOE) (107–111). MOE are specially designed interference filter in a beam split-
ter arrangement. The light is emitted from the source, transmitted through the
sample and split by the MOE into a transmission part and a reflection part. The
idea is to design the transmission spectrum of the interference filter such that it
is an imprint of a PC onto a transmission offset. This offset is necessary to enable
positive and negative features of the PC. The transmission of light through such
an interference filter followed by generating a signal in the detector element
resembles the projection of a measured spectrum onto a PC. The transmission
through the filter replaces the multiplication of loadings with measurement
points of a spectrum; the detector integrating over all wavelengths replaces
the summation part of calculating a scalar product. What is left to do is subtract-
ing the transmission offset mentioned above from the results. For this purpose,
the interference filter had been placed in a 458 arrangement. Then the transmis-
sion and the reflection spectrum can be measured by means of two detectors
arranged in perpendicular lines of sight. Calculating the difference signal of
both detectors cancels the transmission offset.

5.4. Artificial Neural Networks Combined with Variable Selection.
The measurement technique surface plasmon resonance (spr) (112) is sensitive
for analyzing refractive indexes of liquids or vapors. Since the matrix, water,
eg, and a dissolved analyte have different refractive indices the refractive
index of a sample is concentrations dependent. A change of the samples’ refrac-
tive index is measured by a highly nonlinear wavelength shift of the plasmon
absorbance. However, since only one property of a sample, ie, the refractive
index, is measured, binary or ternary mixtures cannot be investigated without
experimental adjustments. A polymer coating of the spr sensor head was pro-
posed resulting in different, time-dependent enrichment or desorption processes
depending on the molecule size. That means different analytes cause a time- and
analyte-dependent change of the spr spectra. This idea was applied in references
113 and 114 to measure binary samples of two chlorofluorocarbons and ternary
mixtures of alcohols, respectively. Time series of spr spectra monitoring different
sorption–desorption behaviors of the analytes were evaluated then by means of a
neural network. Inputs into the neural net are the wavelength shifts measured
at preselected points of times (variables). Usually, one wants a high time
resolution, ie, a large number of variables, in order to capture fast and similar
responses and not to lose information. However, there are several disadvantages
of using a lot of information like hiding meaningful variables by irrelevant vari-
ables or overfitting. Furthermore, danger to change the correlation is increased
with the number of variables and many variables mean increased computation
time for the neural net training.

Full-connected neural networks employing a large number of variables are
prone to overfitting (113). Hence, so-called growing neural nets were applied in
Refs. 113 and 114 resulting in sparse, nonuniform structures optimized to a spe-
cific problem. The growing of a feedforward back-propagation network is started
with one not having hidden neurons or connections. Then one neuron is added at
a time, which is connected to one output neuron and two other neurons such that
the error decrease regarding the training data is maximized. However, the out-
come of this procedure is still dependent on the way the calibration data are split
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into training and monitoring data. To overcome this ambiguity two strategies
have been proposed: (1) To grow neural networks on a rather large number of
different training–monitoring sets in parallel. Ranking the variables considering
their importance follows this. The number of net growings in which it was
selected determines the importance of a variable. The final network is grown
in a second step by iteratively adding variables to it in order of decreasing impor-
tance until the addition of a variable does not increase the predictability of this
final network anymore. (2) A certain training–monitoring set is defined and a
small number of nets are grown with different initial weights. The best of
these is chosen to be the initial topology for the second, different training–
monitoring set. Again a number of networks with different initial weights are
grown and the best one is selected. This is continued until the topology of the best
network does not change anymore. It was found that the procedure (2) resulted
in better generalizations. Application of such grown networks to binary mixtures
resulted in convincing concentration prediction.

As an alternative for variable selection, a genetic algorithm (115–118) has
been used in Ref. 114 for selecting the optimum subset for neural networks based
on the procedure (1) discussed above. A genetic algorithm is applied to a rather
large number of different training–monitoring sets in parallel resulting in a set
of neural nets. Again, the variables are ranked in decreasing importance and
added in the second step one after the other to a final network until the predict-
ability is not improved anymore. The prediction of concentrations could be
considerably improved using five selected variables compared to using all 50.
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