
CHEMOINFORMATICS

1. What is Chemoinformatics?

Different definitions of chemoinformatics (1) have been given but, within the con-
text of this article we will view it broadly as the management, analysis, and dis-
semination of data related to chemical compounds. Chemoinformatics results
from the application of methods in information technologies to problems in
chemistry.

During the last decade, chemoinformatics has become one of the essential
tools in the early stages of pharmacological and agrochemical discovery. The rea-
son for its importance is rooted in the emergence of high throughput screening
and high throughput chemical synthesis as the dominant technologies for the
discovery of starting points for chemical optimization (2). The use of robotics
for screening and large chemical libraries has resulted in extremely large
volumes of data that require informatics management.

Initially, chemical collections, commonly referred to as libraries, comprised
small numbers of distinct chemicals (3). Nowadays, much larger compound col-
lections are routine throughout the chemistry-based industries. The need to eval-
uate ever expanding libraries requires the development of tools for storage of the
information generated, data analysis, the identification of trends in the data, and
their eventual correlation to the structural and physicochemical properties of the
compounds. In the near future, the challenges in this area will be compounded by
the integration of developments in genomics, proteomics, and bioinformatics (4).
Chemoinformatics work is and will continue to be multidisciplinary, because it
acts at the interface between chemistry and informatics, as well as the multiple
disciplines that use it.
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Some avenues of research in chemoinformatics evolve from observations
made as its tools are applied. An example is provided by diversity analysis. In
the past, it was observed that if the compounds evaluated in high throughput
screening showed a high degree of structural similarity, the result would be spar-
sely successful, or have a limited numbers of related hits (5). Consequently, the
design of the libraries for screening based on chemical diversity ideas became a
crucial step for lead discovery. Methods that provide objective measures of
the dissimilarity among compounds to be acquired or synthesized (6,7) are part
of the chemoinformatics realm, which was developed to avoid the repeated
evaluation of the same chemical classes (8). Because of the wide range of
subjects, all of these aspects of chemoinformatics will be discussed only briefly.

The main purpose of chemoinformatics is to provide tools for the efficient
management of information, a critical step in any decision making process.
Chemoinformatics transforms data into information and subsequently into
knowledge, thus greatly facilitating all aspects of chemical research. This field
is continually expanding and the number of applications and tools available is
very large. Therefore, only some of the many algorithm approaches will be
described here, with a particular emphasis on analysis of chemical information.

2. Chemical Information Storage

Perhaps the most important task in the creation of a chemical database is the
definition of the fields to be stored. The type and scope of the information to be
stored should be pondered carefully at the onset of a project. The database design
requires particular attention, because errors or lack of foresight when creating it
are painful to correct as the systems are deployed throughout the organization.
Depending on the type of information, the project may need to be restarted. Yet,
such foresight is challenging because chemical databases used in research are
continuously evolving together with the data collected. Even at the earlier
stages of the project, input from the end-users is a requisite for the design of
any database.

The distinctive feature of a chemical database is that it allows the storage
and retrieval of structural information as well as textual or numerical informa-
tion on a chemical. All datatypes, including chemical, numerical, and textual
information, can be combined when querying a chemical database. Simple
queries may include combinations of datatypes such as ‘Display all compounds
with an imine functionality that cost less than a given amount and are currently
in inventory’, or ‘Display all benzimidazoles that have been made between 1971
and 1983 that are still available’, or ‘Display all thiazoles that show no cytotoxi-
city at 10 mm concentrations’. Without the chemical structure component, the
same searches could not be done within the framework of textual or numerical
datatypes alone.

Representation of chemical structures in a computer searchable form
requires the adoption of special formats. While multiple formats have been
used over the years, the dominant chemoinformatics software provides a rela-
tionship between structure and either tables or lines that are intrinsically com-
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puter searchable. The two dominant file formats for structural representation
are the SMILE strings and the MOL files, discussed below.

2.1. Line Notations. Alternatives to the valence representation of the
molecular structure in the form of lines or strings have been pursued for decades,
even before the use of computers in chemical information storage and manage-
ment. Earlier attempts included the well-known Wiswesser line notation, or
Bielstein’s ROSDAL (9). Currently, SMILES (Simplified Molecular Input Line
Systems) is one of the most popular notations in this class. The SMILES notation
was developed by Weininger and co-workers and is commonly associated with
Daylight software (10–12).

In a SMILES string, each atom is identified by its element symbol, as well
as additional information that is placed into brackets, including chirality and net
charge. Single bonds are not made explicit, double bonds are indicated as ‘‘¼’’,
while the triple bonds are shown as ‘‘#’’. Aromatic bonds are represented by
‘‘:’’, bond alternancy or more commonly the aromaticity of a ring, is indicated
by using lower case letters for the atoms in aromatic rings. For salts, the smiles
string of the ion and the counterion are connected by a dot. In all cases, hydro-
gens are not made explicit, unless required to establish isomerism. Examples of
these representations are shown in Figure 1.

The representation of rings requires two steps (12). First, one bond per ring
is broken in such a way that an acyclic structure results. There is always a way
to break one bond per ring in a structure so that the result is an acyclic molecule.
Second, broken bonds are numbered and the string for the resulting acyclic
structure is written. In the resulting string, the numbers assigned to each broken
bond are placed next to the adjacent atoms. Examples are also shown in Figure 1.

Geometric isomerism is indicated by the use of both the forward and back-
slash. Before and after a double bond, if the same type of slash is used to show
bonds attached to the double bond, then the arrangement of the centers is trans,
while if opposite, the atoms are cis. Optical isomerism is indicated by the use of
‘‘@’’ or ‘‘@ @’’; if the order of the atoms attached to the chiral center are ordered
anticlockwise, or clockwise, respectively.

One of the limitations of the SMILE strings is that there could be more than
1 equivalent string for the same molecule, because they depend on the internal
numbering system of the structure used. One given structure will not always
yield the same representation, but it will depend on the algorithm used. A cano-
nical representation is one where rules are defined to the extent that only one
string is the correct representation for any chemical structure. ‘‘Unique
SMILES’’ (USMILES) are such representations (12).

2.2. Table Representation. The most common alternative to the string
or line notation is the use of connectivity or connection tables. File formats that
incorporate connection tables have been described in detail in the literature, but
are commonly associated with the software developed by MDL Inc. An example of
a file that incorporates a connection table is shown in Figure 2 (13,14).

MOL (molecule) and SD (structure data) files contain connectivity tables.
Both types of files have a ‘‘counts0 line’’, after comments lines that specify the
total number of atoms in the file, the number of bonds, atom lists, and informa-
tion on chirality. In addition, since the format of the files has been mildly mod-
ified with time, the version of the file is included. The line is followed by an atom
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block that contains the atom symbol, charge stereochemistry, attached hydro-
gens for each atom, and a set of Cartesian coordinates for each atom. In two-
dimensional (2D) representations, these coordinates can be used to plot a flat
molecular structure. However, the coordinate fields can be used to store a
three-dimensional (3D) representation of the molecule, in cases where a spatial
arrangement of atoms is available. The ability to store (3D) information in some
cases could be an advantage of table representations. The bond block specifies
the atoms connected, the bond type, and any stereochemistry or topology asso-
ciated with the bond. Atom list blocks and a structural text descriptor are also
part of the file, though not always explicitly.

The actual connection table follows the atom block, where each bond is
represented by each atom and the bond order. Molecular properties including
net charge, radical character, isotope, etc, are stored in subsequent lines that
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Fig. 1. Examples of compounds with their structure and their SMILES string
underneath.
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Fig. 2. Example of SD File. The first lines are identical to a MOL file.
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start with an M and a word that indicates the property contained in that line.
The MOL terminates in a ‘MEND’ line. While MOL and SD files are identical
at this point, SD files also allow the storage of other properties associated with
the molecule, as well as multiple molecules in a single file.

Molecular properties provided by the user that are to be stored in an SD file
are indicated by a ‘>’ sign followed by the property name in between brackets
(‘< >’) as shown in Figure 2. The information for each molecule is separated
by a blank line and ‘‘$$$$’’.

Other file formats centered on the connectivity tables are available. Reac-
tion data (RD) files (14), are similar to the basic SD file but are able to contain
structural data for the reactants and products of a reaction, as opposed to indi-
vidual molecules.

3. Chemical Information Retrieval: Data Searching

The use of computer readable formats to store structural information is the key
to generating software that will be capable of searching such data. The search
and display of textual and numerical data can be done with Boolean operators
(AND, OR, LESS THAN, GREATER OR EQUAL TO, etc). However, the unique
feature of a chemical database is in the handling of structural information, and
that is where we will focus our discussion.

Different types of searches on structural information can be carried out
(15,16). Two-dimensional information is searched differently from 3D. Two-
dimensional searches can be done with the purpose of (1) identifying an exact
chemical structure; (2) identifying a molecule or molecules that contain a given
structural feature, commonly referred to as a substructure search; and (3) to
search for molecules that look like those in another used as a query, which is
described as a similarity search. Three-dimensional searches can be carried
out to identify molecules that have predetermined pharmacophoric features in
a correct spatial arrangement, with or without explicit knowledge of the 3D
structure of the target.

3.1. Two-Dimensional Searches. Structural and Substructural
Searches. The problem of identifying two identical chemical structures could be
relatively straightforward, if a canonical representation of a molecule is used (12).
However, table representations are not canonical, as atoms could be ordered in a
certain sequence in the database, and entered in a different way in the query.
Such comparison would require going through all possible permutations of the
atoms, which is computationally prohibitive even for relatively small molecules.
Algorithms that are more efficient have to be implemented to search in real
time, and are the centerpiece of the searching for structural information.

Significant gains can be achieved by the use of filters to limit the number of
structures to be explicitly compared. In that way, the expensive exhaustive
searches would only be needed on smaller numbers of compounds instead of
the entire database. A series of computed properties can be stored as the com-
pounds are loaded into a database and can then be used to establish a similarity
or identity to a query fragment or structure.
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Structural keys, such as MOLSKEYS, are properties evaluated as com-
pounds are loaded into the database (16) that could be used to reduce the number
of pairwise comparisons. Structural keys are binary strings (set of zeros and
ones) that indicate whether a given characteristic is present in the molecule.
For example, if the molecule is charged, a predetermined bit in the string will
be set, a different one will indicate the presence of aromatic amines, while yet
another bit could be set by the presence of a carbonyl group. In the end, a vector
is created that shows the presence or absence of predefined features. The result-
ing strings can be compared efficiently by multiple algorithms. For example,
look-up tables are created that list all compounds having a particular bit set.
Compounds present in all the lists that depend on the query can subsequently
be pairwise compared. While not unique for a compound, the comparison of fin-
gerprints greatly reduces the number of structures that have to be compared
pairwise. Software, such as Chemfinder (17) or MDL’s ISIS relies on the use of
structural keys.

Alternatives to the structural keys are molecular fingerprints (12). Con-
trary to the structural keys, in the case of the fingerprints, there is no preas-
signed meaning to each bit. Fingerprints are also bit strings but are deprived
of a direct meaning as found with structural keys. The process of generating fin-
gerprints is initiated by an exhaustive enumeration of all linear patterns in a
molecule, from a list of atoms to paths up to a determined length, which is typi-
cally seven bonds. The number of conceivable paths could be extremely large,
which makes the assignment of each path a position in a predetermined bit
string prohibitive. Instead, each pattern serves as a seed to a pseudonumber gen-
eration, the output of which is a set of bits. In more technical terms, the pattern
is hashed. The set of bits is then composed in a series of Boolean operations that
result in the actual fingerprint. Fingerprints can be handled like structural keys
with Boolean operations for structure related searches (12).

The search for a substructure is another common problem in chemoinfor-
matics. The substructure search is the process of finding particular fragments
or patterns in a molecule. For table notations, the problem is similar to the iden-
tification of complete structures because they also use structural keys, but in this
case, only the list of features present (bits set to one) need to be analyzed. The
software retrieves compounds from the look-up tables that are associated with
all of the features. The fingerprints can be used to match part of the structure
as well. A connectivity table can be generated for the fragment and can verify
if it is contained in other objects in the database.

Line notations have the additional challenge that the queries are only a
part of a structure. SMILES strings are designed for complete structures. Con-
sequently, to construct a query (molecular fragment) a different notation is
needed. In the case of SMILES strings, similarly built SMARTS provide the
query language (12).

Similarity Searches. Often times, searches are not for specific compounds
or compounds containing a given molecular fragment exactly. Searches could be
for compounds that are similar to others or are variants of others in different
ways. Such a search requires that the similarities between two molecules be
quantified, which is not a simple endeavor. For example, molecules could be simi-
lar biologically, have a similar arrangement of key functional groups in space, or
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be similar in physicochemical characteristics. For database searches, similarity
is understood to be structural. In this section, we will be limited to the 2D simi-
larities. Later in this article we will consider other issues on similarity search.

As already described, a compound can be represented by a collection of qua-
litative properties that describe general aspects of the structure, in the form of a
structural key, such as MDLs MOLSKEYS. The similarity between two mole-
cules can be reduced to measuring the similarity between the two binary strings
that represent each molecule. Mathematical methods exist that permit such
evaluation. Perhaps the most commonly used parameter to measure similarity
between binary representations is the Tanimoto Coefficient (18,19). The
Tanimoto coefficient is the ratio of bits set (ie, equal to 1) in both molecules to
the total number of bits set in either structure. Figure 3, should help us to under-
stand this definition. An alternative to the use of the Tanimoto coefficient is the
XOR (exclusive OR) operator, which is simply a count of the number of positions
at which the bitstrings for both molecules differ. This operator is also known as
city block or Hamming distance, and can be shown to be identical to the square of
the Euclidean distance between the two binary strings.

A generalization of the Tanimoto coefficient is the Tversky similarity (20).
The coefficient is defined as

ðQ AND MÞ=ð� Q AND ðNOT MÞ þ � M AND ðNOT QÞ þ ðQ AND MÞÞ

If a and b are set equal to 1, it reduces to the Tanimoto coefficient. If a > b
means that the features of the query are weighted more heavily and this is com-
monly referred to as a ‘‘superstructure-likeness’’ search. In the opposite case,
where a < b produces a ‘‘substructure likeness’’ search, in that case the comple-
tely embedded structures have a higher similarity. Super- and substructure like-
ness searches are part of the major software that runs chemical databases.

3.2. Three-Dimensional Searches: Virtual Screening. The under-
standing of small molecule protein interactions is key to pharmaceutical and
modern agrochemical research because nearly all compounds interact with pro-
teins to elicit their biological activity. Methods to predict those interactions have
become of paramount importance. Virtual screening is the process that permits
the selection of the compounds that are most likely to interact with a potential
target, from a much larger set that is either available or computationally created.
Three-dimensional searches are a key component of the virtual screening process
(21) because the interaction of a small molecule with a protein depends on the
spatial arrangement of their functional groups. Three-dimensional searches
can be done based exclusively on the structure of the ligands, without explicit
knowledge of the protein target, or they could be done based on the structure
of the protein target or direct drug design (22,23). The former is commonly
denoted as indirect drug design (24,25), because the process requires the devel-
opment of hypotheses about the preferences of the protein target of unknown
structure based on the types of ligands it binds and those that it does not bind.

The spatial arrangement of functional groups in small molecules is critical
in either case: direct or indirect design. The storage of molecular structure
becomes important to carry out searches. The creation and maintenance of data-
bases of 3D structures of compounds is essential for chemoinformatics work.
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3.3. Construction of Three-Dimensional Chemical Databases.
Structural information about the small molecule is necessary to build a 3D
chemical database. The information can be obtained from experimental sources,
such as the Cambridge Crystallographic Database. The Cambridge Structural
Database (26) (CSD) contains crystal structure information for >230,000 organic

Fig. 3. Examples of bitstrings for a molecule M and a query Q. Tanimoto coefficient is
7/10 or 70% similarity between Q and M, while XOR is 10.
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and metallorganic compounds. All of these crystal structures have been analyzed
using X-ray or neutron diffraction techniques. Alternatively, computational
techniques can be used to convert 2D representations of a molecule (a SMILES
string or a MOL or SD file) to a 3D structure.

The conversion programs apply a knowledge base to construct the 3D
structure. The pioneer program for the rapid conversion of 2D to 3D structures
is CONCORD (27), which combines rules with energy estimation procedures in
an attempt to produce the lowest energy 3D conformation for each structure. The
procedure uses a fragment-based approach, where different portions of each
molecule are constructed separately, and pieced together to form a complete
molecule. Tables are used for acyclic bond lengths and angles; torsions are
assigned to generate optimum interactions between atoms that are not directly
linked. For rings, bond lengths and angles are calculated using preassigned
rules, and assignment of gross conformations for each ring provides a framework
for the torsions. A strain minimization function removes clearly problematic
areas in the resulting structure. The structures can be further optimized using
molecular mechanics with other programs.

CORINA (28), like CONCORD, is also a rule- and data-based algorithm, but
with a superior ring handling technique, as well as organometallics. CORINA
has been reported to have a higher conversion rate than CONCORD and other
similar software for this purpose. A different approach to the problem is provided
by Converter (21). It uses a distance geometry approach, coupled with upper and
lower interatomic distance bounds, together with topological rules to generate
the 3D structure. The procedure is somewhat slower than the purely rule-
based algorithm, and may be less suitable for the conversion of large datasets
or if structural information has to be generated as it will be used. That will be
the case for software based on-line notations that do not store spatial information
but generate it as required.

Conformational Flexibility, Conformational Searches, and Flexible
Searches. Conformational flexibility of the molecules presents an additional
problem for the 3D searches in chemical databases (25). If only one structure
is stored, the searches will be incomplete, because conformations other than
the one stored may satisfy the search criteria. A solution to the problem is to
store multiple conformations for every compound.

The explicit storage of conformations requires a plan for sampling the small
molecule conformational space. The problem of conformational searching in com-
putational chemistry has attracted significant attention for many years and has
been the subject of multiple, excellent reviews (29). The approaches devised
have relied, for the most part, on the use of molecular mechanics to sample
the conformational space of a molecule, by means that include genetic algo-
rithms, stochastic searches, and distance geometry, among others. Since storing
all conformations of a molecule is impractical, which conformations should be
retained is also a significant issue for all but the most rigid compounds. Many
of the conformations generated could be redundant, or essentially identical to
others already stored.

One approach commonly used to decide which conformers should be
retained has been the generation of extensive conformational libraries, followed
by their clustering into related families. The clustering is done using the
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root-mean-square (rms) deviation in the Cartesian coordinates of the different
conformers. Typically, one representative from each cluster is selected.

A more efficient alternative for sampling, which alleviates the time that is
required to carry out a full conformational search, is poling (30). This method
avoids oversampling of regions of conformational space that have been explored.
Still, only individual conformations are stored or scrutinized. Poling represents a
significant improvement in terms of the time and amount of conformational
space that is sampled compared to other procedures. However, both poling and
clustering store only representatives of a much larger set. The set of representa-
tive conformers selected may not include the exact spatial arrangements in a
query, even though they may be accessible to the molecules under scrutiny in
conformations not stored.

With different variants, torsional (21,31) fitting is a technique to deal with
the issue of missed conformations that may satisfy a 3D query. Different
implementations of the technique, such as the directed tweak algorithm, involve
the optimization of rotatable bonds so that they would meet the elements of
the query if possible. For a large chemical database, torsional fitting is a
process that is computationally demanding, as it involves an optimization step.
Filters are applied to limit the number of molecules that must undergo the
torsional search. Filters applied depend on the software implementation, or on
the protocol defined by the user. Two-dimensional screens ensure that the
molecule contains the correct functional groups and are advantageous as a pre-
liminary step. Determination of upper and lower bounds for the distances acces-
sible to the critical atom pairs are common strategies to reduce the amount of
sampling required. Inclusion of torsional flexibility increases the number of
hits that are retrieved in the search procedure, but with added computational
cost.

Building Queries: Pharmacophore Generation and Validation. A query
needs to be properly defined before carrying out a search. The type of query and
the search strategy will depend on the knowledge that is available on the struc-
ture of the target. Indirect drug design techniques can be used to identify phar-
macophores when no knowledge about the protein structure is available.
Pharmacophores are the collection of relevant groups in the small molecule
that can be responsible for the observed biological response. Beyond drug or agro-
chemical discovery, structure–property relationships, ie, in material science
research, can be utilized.

Pharmacophore patterns could serve as queries to identify more molecules
that satisfy them, and possibly the pharmacological activity that the pharmaco-
phore summarizes. Their spatial arrangement is called a pharmacophoric pat-
tern, whereas the position of complementary groups on the protein would be
designated as a protein or pharmacophore map. A variety of techniques, from
simple SAR to computation of quantum mechanical properties, can be used to
define a pharmacophoric pattern (24,25). Once the pattern is found, the search
of 3D databases can be undertaken, using software such as ISIS (32), UNITY
(27), APEX-3D (25), or ALADDIN (12).

Excellent reviews in the area of pharmacophore design and validation exist
(33,34). For the most part, automated pharmacophore generation techniques are
in use, such as DISCO (35), Catalyst (25), MolMod (36), and FlexS (37) to name
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but a few. Pharmacophoric points are identified, but in addition, other features
can be part of a pharmacophore, such as receptor points or excluded volumes.

The process of identifying a pharmacophore requires consistent biological
information determined under identical conditions. The set should contain active
and inactive compounds to serve as controls. If the compounds are flexible, a
conformational study of each of them is also required. After the conformational
libraries are available for each active compound, conformations are sought that
maximize the similarities among the compounds of the same biological activity.
Those features found common to the active compounds should be absent in the
inactive compounds that are structurally related, which greatly reduces the total
number of possibilities. From the study, one or a number of models could result
that can be used for database searching. In the initial stage, the properties used
to define pharmacophores are distances between functional groups within the
molecules, which can be grossly classified as hydrophobic centers, hydrogen-
bond donors, hydrogen-bond acceptors, charged centers, etc, and are referred
to as pharmacophore elements. When similar spatial arrangements of pharma-
cophore elements are found in any of the low energy conformations of the active
compounds that are absent in the inactive compounds, the structures of the
active compounds can be overlaid providing a pharmacophore map. The confor-
mation that provides such common spatial arrangement of the pharmacophore
elements in each molecule is its bioactive conformation.

In some instances, the identification of pharmacophore points on the mole-
cules themselves is not possible. While the functional groups in a series of differ-
ent molecules may not be occupying the same relative portion within the
molecule, it may be possible to orient them in such a way that they point to a
putative external point in a similar manner. These points, external to the mole-
cule, could also be part of a pharmacophore, and are commonly referred as recep-
tor points. These points reflect that the pharmacophore elements are those that
by indirect evidence appear to be interacting with the protein target.

Additional information about the active compounds could be incorporated
as part of the pharmacophore, and can be used during the search in chemical
databases. The most straightforward is to look for patterns in computed partition
coefficients that may discriminate the active from the inactive compounds. In
addition, other shape or electronic properties can serve to differentiate active
from inactive compounds, and can be incorporated during the searches.

After a pharmacophore has been established, it is possible to carry out
statistical studies to determine the relative importance of the different properties
in the pharmacophores. Analysis such as CoMFA (38) or CoMSIA (39) or
Hopfinger’s molecular shape analysis (40) do provide information that could be
used to rank order the hits that come out of the database. The hits can also be
ranked based on their goodness of fit to the pharmacophore features (25).

Most of the work carried out to define pharmacophores has been done using
small sets of compounds, in part, due to the need to ensure the homogeneity of
the biological data imposed a constraint. Most automated pharmacophore deter-
mination software assumes that the compounds under study are binding or acti-
vating the target using a similar mechanism and site of action. The advent of
high throughput screening as a dominant force in drug discovery has meant
that much larger datasets are now available for analysis, but those sets are
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not necessarily homogeneous. The methods that were used to develop pharmaco-
phores are not suitable to address the issues posed by large heterogeneous
datasets. One solution has been the selection of homogeneous subsets for
which detailed pharmacological information is possible. Methods that take into
account the heterogeneous nature of the data as well as larger sample sets have
been developed, using new means to carry out the analysis (41,42).

Docking and Target Structure-Based Database Searches. Whenever
the structure of the target protein is known, it can be used in the process of
searching chemical databases. The search is done by attempting to fit the
small molecule into the known protein structure, commonly referred to as dock-
ing. In the first step, docking aims to predict how a small molecule can interact
with a macromolecular target, and subsequently attempts to score how well the
small molecule complements the binding site. The ultimate goal is to predict if
and how a given small molecule can favorably interact with a protein.

A large number of different algorithms have been proposed for the auto-
mated docking of molecules (43,44), including DOCK (45,46), AutoDOCK
(47,48), FLExX (27,49), and GOLD (26,50). While originally, the methodologies
for docking were rigid-body matches, the most common implementations opti-
mize the small molecule in the cavity of the site, and the way in which that is
achieved constitutes one of the most significant differences among the different
algorithms. A variety of optimization techniques including shape matching to
genetic algorithms, evolutionary programming, or simulated annealing are
used to that end.

While the above methods use complete molecular structures to carry out the
searches, fragment-based methods are also common (51). Whole molecule meth-
ods are based on molecules that are part of the 3D chemical database, but
fragment-based methods build new molecular structures in the site from
substructures. Fragment-based methods can place a seed molecule in a cavity,
and attach other groups in a stepwise manner, building up the desired structure.
Another possibility is to place key functional groups complementing the features
of the protein, and attempt to connect them into a single structure. LUDI is the
most common among such build up procedures (52). The program connects
fragments that dock into specific sites of a receptor, such as hydrogen-bond
donating or accepting or hydrophobic residues. Fragments come from predefined
libraries that can easily be customized. Once the fragments are positioned, they
may be linked together using linear groups. If a seed fragment is placed in the
binding site, the program can be used to add functionality that complements the
site. The program may even perform a preliminary evaluation of synthetic acces-
sibility of the linkage required, one of the major problems of drug design. Several
other methods have been described.

Once the small molecule has been docked, the goodness of its fit should be
determined. The prediction of binding affinity, or at least a correct rank order, is
currently one of the most challenging problems in ligand design (53). The pur-
pose is to prioritize the hits obtained from a computer program from a 3D search
of structures in a database. This is another area where the different methods
diverge, as several scoring methods are described (54,55). Some scoring methods
such as free energy perturbation provide relative scores that are quite accurate
but very computationally demanding, and therefore ill suited for virtual
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screening where hundreds of thousands or millions of compounds are typically
computationally screened. Most scoring is done using force field calculations or
empirical free energy scoring functions. Another possibility is the use of consen-
sus scoring, where different scoring techniques are computed simultaneously,
and a weighted average is taken as the parameter to rank order the goodness
of binding (44).

For the most part, only limited efforts have been placed in dealing with the
flexibility of the protein or the binding site. Some attempts have been made to
take snapshots during a molecular dynamics trajectory, and to use the different
structures, or averaged structures, for docking. The treatment of scoring func-
tions and protein flexibility are major shortcomings at this time, which are
attracting active research.

Examples of Applications and the Success of Virtual screening. High
throughput screening methodologies in the pharmaceutical industry became so
dominant due to a perceived lack of success in the area of structure-based
drug design (56). Since then, the use of more sophisticated techniques facilitated
their success, particularly when it was closely coupled to structural information
(49,57,58).

Human immunodeficiency virus HIV protease and neuramidase inhibitors
were derived from the use of computational tools and structural information.
Various other enzyme inhibitors were also successfully designed by using a com-
bination of structure-based and computer-aided drug design as well. Pharmaco-
phore-based approaches resulted in the design of metalloprotease, tyrosine
kinase inhibitors, and integrin receptor antagonists.

Nowadays, all the tools of computational chemistry, molecular design, and
chemoinformatics are integrated into the process of designing new products.
Soon it will be difficult to identify compounds largely derived based on those
techniques, as they will be entwined with other discovery technologies. The
acceptance of the tools of chemoinformatics and virtual screening is pervasive,
and most discovery projects use them to the extent that is required.

3.4. Diversity Searches. The need to carry out diversity searches
emerged in the pharmaceutical and agrochemical industry because of the
advances in automation in biological screening and high throughput chemical
synthesis. Those technologies posed a new set of questions to be asked from a
chemical database. Initially, chemical collections for screening were obtained
from internal libraries in the pharmaceutical industry. Those libraries had
been created over the years by medicinal chemistry efforts, and consisted of
large numbers of analogues on a few chemical families. Lack of success in the
approach (5) was attributed to the relatively small size of the libraries studied,
and to the lack of variety prosessed by those chemical collections. The need to
detect redundancies in a chemical library led to the concept of diversity analysis.

With few exceptions (59), diversity analysis of chemical collections evolved
from the methodologies of structure-based drug design. Consequently, diversity
analysis has been heavily dependent on the computation of physicochemical or
structural properties (8,60). Chemical diversity is mostly associated with meth-
ods that allow the determination of how well libraries could represent portions of
chemical property space. The scattering or clumping of representatives in a
library can be surrogate indicators of the probability that that library would
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provide multiple, singular, or no hits for a set of targets. The challenges asso-
ciated with the determination of chemical diversity are quite varied. The most sig-
nificant issues are the selection of properties and the algorithms that are to be
used to determine and select diverse compound sets.

Properties for Diversity Analysis. Properties in use for diversity analysis
include the use of computed physical properties for the compounds. A compound
can be described by a collection of global properties, such as the octanol–water
partition coefficient, its pKa parameters related to molecular size and shape,
counts of hydrogen-bond donor and acceptor centers, among others (61). These
properties can be combined with topological descriptors, such as molecular con-
nectivity indexes that encapsulate information about the 2D structure of the
molecule, its structural complexity, and some simple measure of its electronic
character (62,63). From them, shape and flexibility parameters can be generated.

While the structural keys were originally designed to make searches of che-
mical databases more efficient (8,61), they also play a significant role in the ana-
lysis of chemical diversity, and chemical similarity. Structural keys are discrete
valued descriptors contrary to the global physicochemical properties, and there-
fore require different tools for their analysis. Some of those methods have been
implemented in the Catalyst software (64), etc.

Three-dimensional properties can also be used and provide another view of
the diversity of a compound collection. The structures necessary can be genera-
ted by the same methods indicated above for the creation of 3D databases. Three-
dimensional properties for diversity analysis include the BCUT parameters (65).
These parameters involve three types of matrices, where the diagonal elements
are based on the atomic charges, polarizability, and hydrogen-bond donor or
acceptor capabilities for each atom, respectively. The off-diagonal elements are
based on 2D or 3D information, including functions of interatomic distance, over-
laps, computed bond-orders, etc. All these parameters can be computed using
semiempirical molecular orbital programs. The lowest and highest eigenvalues
that result from the diagonalization of these three matrices are considered to
reflect most aspects of the molecular structure. Methods must be developed for
rationally deciding which BCUT values (eigenvalues) would be best for repre-
senting the chemical diversity of a given population of compounds. The analysis
is part of the DiversitySolutions (27) software, whose efficiency has been
reported in the literature. However, even at the 2D level, BCUT parameters
can be satisfactory for diversity analysis.

Counts on the possible spatial arrangement of chemical groups (66,67) are
alternatively used to determine the pharmacophores accessible to a molecule.
Pharmacophoric centers commonly associated with intermolecular interactions
are typically included, such as hydrophobic centers, charged centers and
hydrogen-bond donor and acceptor centers. Once the machine recognizes those
groups, the distances between each of the centers are recorded. Distances
among the pharmacophoric centers assume continuous values, but when varia-
tions in distance are small, they may be considered equivalent. For this reason,
binning of pharmacophoric patterns is used by the major commercial software for
this approach. In this case, the pharmacophore-based representation of a mole-
cule is still a binary string that indicates the presence or absence of a certain
combination of pharmacophoric centers at a certain range of distances.
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Other 3D descriptors are based on the ComparativeMolecular Field Analysis
(CoMFA), which is particularly useful for series of related compounds (8). The
scores from docking compounds against a set of random proteins have also
been utilized to check the diversity of compounds (68). The set of scores deter-
mined for each protein constitutes a descriptor. The approach was inspired in
a previous attempt to utilize experimental binding data for diversity assessment
(59,69).

Algorithms for Diversity Analysis (70). Regardless of the set of properties
considered, molecules are represented by vectors either of continuous values, or
as bitstrings in the case of structural keys or pharmacophore analysis. Hence,
each molecule in the set is represented by a vector, or as a point in a high-dimen-
sional space, or a ‘‘chemical space’’. The similarity between two molecules can be
measured calculating a distance between the two points that represent each
molecule. If the properties are binary, then the distance can be computed
using the Tanimoto coefficient or the XOR distance, if the properties are contin-
uous, an Euclidean distance can be used.

The distances generated for a set of molecules can be used as a similarity
matrix, when the distance between every pair of molecules is determined. A simi-
larity matrix can then be used to select a subset of compounds that are as diverse
as possible for the set of properties under consideration. However, the relation
between compounds will critically depend on the chemical representation
adopted because compounds that appear to be different for a set of properties
can be very much alike under a different set of descriptors (71). The selection
of a property space is therefore an important issue when analyzing for diversity
and requires careful consideration. The selection of properties is mostly based on
the ability of the set chosen to segregate compounds of different pharmacological
profile (60).

Clustering techniques provide the means to group compounds in sets that
have similar properties (72). There are different types of clustering algorithms,
but one of the most commonly employed in many arenas and also in chemoinfor-
matics work, is the hierarchical agglomerative. Step after step the method clus-
ters successively more distant compounds. In the first step, the two most similar
compounds are grouped together forming a cluster. The next set of closely related
points or clusters are linked together, and the procedure continues until all
points are part of a single cluster. The representation of the clustering process
is a dendrogram (a classification tree) that goes from the individual points or
singletons to all compounds in a single cluster, a representation that is common
in other disciplines. An example is shown in Figure 4. The number of clusters is

Fig. 4. Dendrogram: A table of properties (P1 to P7) for a series of compounds (A–Q).
When a cutoff for similarity (height) of 2 is, eg, selected, compounds A, E, and M belong
to a cluster, while G, J, H form a different one. Some compounds have clusters of their
own, denoted as singletons. Compounds B, C, and D are examples of that category.
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determined by the degree of similarity that is considered significant. Once a set
of clusters is defined, a compound can be selected from each cluster, resulting in
a diversified set.

A clustering strategy that has been widely used in chemoinformatics is the
Jarvis Patrick algorithm (73). In simple terms, the algorithm creates a list of its
nearest neighbors for each point. Two points belong to the same cluster if they
are in each other’s list of nearest neighbors, and they share a number of common
neighbors. Multiple technical reasons make it a preferred choice for the problem
of compound selection. Beyond their commonly reported speed and efficiency, it
can automatically deal with nonspherical clusters efficiently. Hierarchical
methods can also deal with nonspherical clusters, but prior knowledge about
the distribution is required.

Nonclustering methods are also used for diversity selection. Cell-based
methods are part of the DiverseSolutions software (27), where the space defined
by the chemical properties selected is partitioned into cells. The occupancy of
each cell is determined based on the properties of the compounds (74,75). The
advantage of cell-based techniques is that they provide a uniform sampling
and the areas of property space that are not represented in the library can read-
ily be identified, providing a simple representation of the completeness of the
chemical library. D-optimal design is also a technique that was applied to this
problem (61). However, its use has been less significant because of its tendency
to select compounds unequally from the entire chemical space, and show a bias
for points at the edge distribution.

Software such as C2-Diversity (Accelrys, San Diego) provides a broad
assortment of properties and a variety of methods for selecting such diversity
(64). Pipeline Pilot offers an alternative of innovative software architecture
that computes processing, analysis, and mining of large volumes of data through
a user-defined computational protocol (76).

Contrary to similarity comparisons, where success is measurable by the
number of compounds that share the desired profile possible from among those
chosen using the metric, the goodness of diversity algorithms are harder to char-
acterize. If the goal is simply to remove redundancy from a chemical library, even
the simplest of algorithms can fit the requirement. If, on the other hand, the goal
is to increase the hit rate for a library of related targets, or for any random set of
targets, the best strategy to utilize could be different. The overlap and similarity
of the software currently available for library design can be a major challenge,
since most different packages are fragmented. The fragmentation is the result
of two trends. On one hand, there is the acquisition of software from academic
sources or by formal mergers and acquisitions that the major chemoinformatics
software vendors have undergone. On the other hand, there is the commercial
tendency to fragment the software, to customize to specific needs, which in prac-
tice results in redundancy as frequently more than one package is required.

Design of Chemical Libraries. Few, if any, hits from massive and truly
random screening libraries could be evolved into starting points for product
development. Additional constrains have been imposed to the value ranges of
the properties being considered, which are consistent with their intended use,
effectively limiting the chemical space taken into account. Lists of exclusions
are common when the compounds are intended for screening where reactive
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groups are removed from the searches. The same types of properties have also
been used to tailor a library for drug discovery, in an attempt to look for drugs
in an area of chemical space that is relevant to medicinal chemistry (77,78). For
the most part, these efforts have been focused around the structural character-
istics of drugs (79–81) and the design of libraries for screening has now centered
on the use of compounds similar to drugs, or ‘‘drug-like’’ molecules.

The nature of the constraints to be imposed on chemical space was derived
by the statistical analysis of the properties of marketed drugs or of compounds
that have undergone human testing. The types of chemical functionalities
found in them, and their physicochemical characteristics, serve to define the
acceptable range of properties that are characteristic of drugs. The argument
has been that the properties of compounds that have been in late stage trials
reflect what is biologically compatible. The study of successful compounds has
been part of the attempt to predict their absorption, metabolism, distribution,
excretion (ADME), as well as their toxicology. Prediction of those properties is
currently receiving significant attention in the chemoinformatics field since it
represents a major bottleneck in drug discovery and development processes.

Within this realm, the ‘‘rule of 5’’ (82) has gained acceptance (83). These
rule was developed by a simple analysis of databases of compounds that had
undergone clinical trials. It was concluded that poor permeation or absorption
were more common when: there were >5 hydrogen bond donors; >10 hydrogen-
bond acceptors; the calculated Log P was >5, and the molecular weight was
>500. The cutoffs for each of four parameters are multiples of five. Thus its
name. The rule does not cover compounds that are actively transported. This
simple chemometric exercise has affected the design of ligands for target pro-
teins. However, the approach is not without its criticisms (84,85).

Statistical rules to predict solubility, oral availability, and permeability are
part of the repertoire of chemoinformatics tools [86–88]. Those properties can be
quickly computed with packages such as QikProp (89), or derived based on global
molecular properties, such as those provided by the ACD Labs package (90) and
that are straightforward to implement. Many other relations are commonly used
to predict blood-brain barrier permeation, cell permeability, or to estimate stabi-
lity and pharmacokinetic parameters.

Important efforts have been made in the area of using experimental infor-
mation to predict oral absorption. The iDEA (In Vitro Determination for the
Estimation of ADME) simulation system is a computational model developed
to predict human oral drug absorption based on its solubility and permeability,
which is empirically determined (91).

The determination of metabolism is an extremely complex issue, where the
different isozymes of cytochrome P450 play an all-encompassing role. Prediction
of the sites of metabolism (regioselectivity) for this enzyme can be done by eval-
uating the electronic tendencies for oxidation of all the potential sites within the
substrate molecule (92–95). However, this is only a preliminary approach, and
complex simulations are still required to carry out metabolism prediction accu-
rately. Biological processes are quite complex and cannot be simulated entirely
in-silico. The real value in chemoinformatics resides in the derivation of simple
rules. Whenever those rules are possible, they result in biases in compound selec-
tion toward candidate compounds that are more likely to succeed.
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3.5. Toxicology Prediction. The prediction of the toxicological charac-
ter of a compound is of foremost importance throughout the chemical industry,
and extends from the agrochemical and pharmaceutical industry to the environ-
mental and food chemistry. A large number of approaches have been adopted and
are employed to study the compound toxicity problem (96).

One of the most popular packages for that purposes is TOPKAT (64,97)
which is a self-contained computational toxicology package that uses 2D descrip-
tors and statistical models to generate reliable toxicological profiles of organic
chemicals, one at a time.

An alternative to the statistical analysis of properties are knowledge-based
systems that are computer programs to organize relevant experimental data to
help a user make decisions about concrete issues. They require the use of a
systematic database of information from which rules are derived, which allows
the prediction of the property to be scrutinized. HazardExpert predicts different
toxicity effects of compounds such as carcinogenic, mutagenic, teratogenic,
membrane irritation, and neurotoxic effects (93). The knowledge base was devel-
oped based on the list of toxic fragments reported by more than 20 lead experts.
This software also predicts bioaccumulation as well as bioavailability based upon
predicted physicochemical values. It is a rule-based system using known toxic
fragments collected from in vivo experimentation. DEREK is also a rule-based
approach that can make predictions about a large set of toxicological properties
including carcinogenicity, irritancy, lachrymation, neurotoxicity and thyroid
toxicity, teratogenicity, respiratory and skin sensitization, and mutagenicity (98).

MULTICASE and CASE programs (99,100) can automatically identify
molecular substructures that have a high probability of being relevant or respon-
sible for the observed biological activity of a learning set comprised of a mix of
active and inactive molecules of diverse composition. New, untested molecules
can then be submitted to the program, and an expert prediction of the potential
activity of the new molecule is obtained.

4. Chemical Databases

Chemical information itself is abundant, and the Chemical Abstract Service
(CAS) has maintained the most comprehensive resource, in this field (101). Sci-
Finder provides a desktop research tool that allows the exploration of research
topics, with little training, containing information on >33 million substances.
The STN service provides specialized information on >200 different subjects.

CrossFire Beilstein (32) has extensive information on bioactivity and phy-
sical properties that makes it particularly useful when undertaking biological
research. The database also provides information on the ecological fate of
compounds.

Other databases are also worth noting because they contain information
that is more specific. There are vast numbers of commercial databases with dif-
ferent focus. One of the most common is the ACD (Available Chemicals Direc-
tory) (32), which contains information on price and availability on >300,000
compounds. This information includes not only a 2D representation of the mole-
cule, but also 3D models that make it useable for pharmacophore searches or for
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docking purposes. Many chemical vendors also provide catalogs of rare chemicals
in 2D format, but that can be readily converted to a 3D database using the
methods described previously.

Chemical databases also deal with reactivity information. As described
above, reaction databases have special characteristics that arise from the need
to handle reactants and products. Multiple databases exist for this purpose.
SpresiReact database is available from InfoChem GmbH and contains 2.5 million
different reactions (12,32). It contains 1.8 million individual molecules that
appear as components of the reactions, journal references, yields, and reaction
conditions information. RefLib (32) is another broad collection of novel organic
synthetic methodologies that covers functional group transformations, metal-
mediated chemistry, and asymmetric syntheses, as well as reactions from
Theilheimer’s Synthetic Methods of Organic Chemistry. An electronic version
of the entire series of Organic Syntheses, ORGSYN, contains general synthetic
methods and proven compound preparations. Similarly, Derwent’s Journal of
Synthetic Methods, has been condensed in the RX-JSM database. Methods in
Organic Synthesis (MOS) is a selective current awareness database derived
from a bulletin of the same name, published by the Royal Society of Chemistry.
This database focuses on important new methods in organic synthesis and com-
prises >3300 reactions per year, dating back to 1991. BioCatalysis is a selective,
thematic database that focuses on chemical synthesis using biocatalysts, includ-
ing pure enzymes, whole cells, catalytic antibodies, and enzyme analogues. The
Failed Reactions database (63) is a unique compilation of reactions with unex-
pected results, which may involve an unexpected product, an immediate further
reaction, or simply no reaction.

Combinatorial chemistry has played a significant role in the making of com-
pounds for material sciences as well as for the agrochemical and pharmaceutical
industries. The SPORE (32) and Solid-Phase Synthesis (63) databases include
data particular to solid-phase organic synthesis, such as information on poly-
meric materials, linkers, solid supports, and protecting groups. The Protecting
Groups database (32) provides information on methods for protection, deprotec-
tion with the ability to search generically, based on functional groups, protected
groups, tolerated groups, and reaction conditions. Bunin’s book The Combinator-
ial Index has also been put into electronic form. Other databases on chemical
reactivity also exist

Apart from chemistry resources, there are a large number of content data-
bases with information specific about different areas (102,103) all linked by their
chemical structure, which include material sciences, agrochemical, physicochem-
ical, and biological activity. These databases are provided by a variety of solution
providers, offering different products, which may complicate the search for an
appropriate one.

5. Data Analysis and Presentation

Data mining is crucial when large amounts of data are generated and is a trend
observed in many industries, including the pharmaceutical industry (104). The
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idea is to integrate a number of visualization, statistical analysis tools through
graphical user interfaces.

One of the most popular packages for this purpose is Spotfire (105), where
chemical structure data can be combined with data from different sources, in
order to provide insights into the property of interest, biological or physical.
These software tools allow the users to manipulate variables and large quantities
of data, and integrate them with simple statistical tools such as graphs, decision
trees, and scatter plots. The software allows the user to merge data from diverse
sources into a single screen with the ability to visualize trends. The software is
in use in the pharmaceutical, but also in the energy, specialty chemical, and
semiconductors industries.

DIVA (63) is a package with a similar purpose that was developed specifi-
cally for the pharmaceutical industry. DIVA allows users to retrieve and work
with chemical structures, assay results, and other chemical and biological data
in one convenient spreadsheet. Powerful easy-to-use tools for data integration,
visualization, analysis, and reporting save time and allow researchers to get
more value from their data.

6. Economics of Chemoinformatics

The economic impact of chemoinformatics is two sided, as it is an industry that
produces software, but it also greatly affects the productivity of all chemistry
research and development. On one hand, during the year 2000, the overall mar-
ket for chemoinformatics, bioinformatics, and simulation software was �1.3 bil-
lion. The number is in circulation and is based on assuming a spending of �7%
of the R&D budget of $15 billion in informatics services for the composite of
pharmaceutical, specialty chemical, and agrochemical markets. About 90% of
that amount is spent in-house, giving an estimate of �$150 million for third
parties. The numbers are poised for significant growth on a yearly basis.

However, the market is remarkably fragmented. The reasons for the frag-
mentation involve the nature of the business, where technological innovation is
key and there are low barriers to establish new ventures. New players with an
interesting application can create a niche from which they can grow. Thus, the
established vendors face competition from nonprofit organizations, in-house
solutions, and other technology providers, such as IBM, SGI, or Agilent.

No publicly traded company can be labeled truly chemoinformatics pure
play. In many cases, the company has other business associations or forms
part of a major conglomerate that makes the analysis more complex. Two compa-
nies that have a strong chemoinformatics component, Tripos and Pharmacopeia,
also have associated molecular modeling software and chemistry research.
Another equally important player in the area is MDL, Inc., a subsidiary of the
major publishing conglomerate Elsevier.

Pharmacopeia’s software revenue for the 2001 third quarter rose 20% com-
pared to its 2000 third quarter of $21.5 million, which included the effects of
acquisitions. For the 9-month year-to date period, Tripos recorded $32.5 million
in revenues compared to $16.2 million in 2000, an increase of 101%. However,
this number is an aggregate of financial transactions and other nonsoftware

Vol. 6 CHEMOINFORMATICS 21



business. The results for both companies reflect the growth rate of the industry,
which is picking up pace. As of the end of the third quarter 2001, the market
capitalization for Tripos was 127.7 million versus 334.4 million for Pharmacopeia.

Two revenue models exist in the industry. On one hand, there are the com-
panies that simply sell software and services into the drug discovery market, and
on the other hand, there are companies with research collaborations with major
pharmaceutical companies, with upside potential if royalties are retained. For
software providers, the preferred model is that of software licensing and mainte-
nance fees. In some cases, and due to the steep licensing fees, yearly license pay-
ments have been adopted. However, this limited the perceived value of those
companies and imposed restrictive market caps. In an effort to improve their
valuation, companies moved to provide other services as well. Through mergers
and acquisitions during the late 1990s, Pharmacopeia, a chemistry services
provider for the pharmaceutical industry acquired MSI, Inc., while Tripos, a soft-
ware provider, acquired Receptor Research a small chemistry services provider
based in the United Kingdom.

Consolidation is not new to the industry. Accelrys, the software division of
Pharmacopeia, is the result of a number of mergers and acquisitions, the most
recent being that of the Oxford Molecular Group, based in the United Kingdom
in 2000 for $22 million. The acquisition of Trega by Lion Biosciences has resulted
in a different model where there is forward integration and where a company in
the area of genomics software acquired a provider of tools and content.

The developments in genomics and proteomics are likely to produce a new
wave of software tools that more closely integrate the tools of bioinformatics and
chemoinformatics. Structural proteomics is also giving rise to a new crop of com-
panies that aim at structural chemistry and drug discovery, many with in-silico
components. This is an arena where the landscape is rapidly changing, with a
yearly growth of up to 40%.

From a different angle, it is different to gauge the importance and produc-
tivity gains due to chemoinformatics. However, robotics and automation, as well
as multiparametric analysis, would not be possible without the intensive use of
computers in chemistry.
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