
DESIGN OF EXPERIMENTS

1. Introduction

Obtaining valid results from a test program calls for commitment to sound sta-
tistical design. In fact, proper experimental design is often more important than
sophisticated statistical analysis. Results of a well-planned experiment are often
evident from simple graphical analyses. However, the world’s best statistical
analysis cannot rescue a poorly planned experimental program. The main reason
for designing an experiment statistically is to obtain unambiguous answers to
questions of major interest at a minimum cost. The need to quantify relation-
ships, learn about interactions among variables, and to measure experimental
error are a few of the added reasons for designing an experiment statistically.

Many chemists and engineers think of experimental design mainly in terms
of standard plans for assigning treatments to experimental units, such as the
Latin square, factorial, fractional factorial, and central composite (or Box)
designs. These designs are described in books, such as those summarized in
the general references of this article, and catalogued in various reports and arti-
cles. Additionally, numerous commercial software packages are available for
generating such experimental designs, as well as to aid the experimenter in ana-
lyzing the resulting data. Important as such formal plans are, the final selection
of test points represents only the proverbial tip of the iceberg, the culmination of
a careful planning process. For this reason, we will place particular emphasis on
the process of designing an experiment.

Statistically planned experiments are characterized by (1) the proper con-
sideration of extraneous variables; (2) the fact that primary variables are chan-
ged together, rather than one at a time, in order to obtain information about the
magnitude and nature of interactions and to gain improved precision in estimat-
ing the effects of these variables; and (3) built-in procedures for measuring the
various sources of random variation and for obtaining a valid measure of experi-
mental error against which one can assess the impact of the primary variables
and their interactions.

A well-planned experiment is often tailor-made to meet specific objectives
and to satisfy practical constraints. The final plan may or may not involve a stan-
dard textbook design. If possible, a statistician knowledgable in the design of
experiments should be called in early, made a full-fledged team member, and
be fully apprised of the objectives of the test program and of the practical consid-
erations and constraints. He or she may contribute significantly merely by ask-
ing probing questions. After the problem and the constraints have been clearly
defined, the statistician can evolve an experimental layout to minimize the
required testing effort to obtain the desired information—or, as a minimum,
review a plan that may have been developed by a practitioner. However, design-
ing an experiment is often an iterative process requiring rework as new informa-
tion and preliminary data become available. With a full understanding of the
problem, the statistician is in an improved position to respond rapidly if last-
minute changes are required, to help experimenters gain understanding in a
sequential manner, and to provide meaningful analyses of the experimental
results, including statements about the statistical precision of any estimates.
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Some of this article previously appeared in Refs. (1) and (2). Reference (3)
proposes a systematic approach to planning a designed experiment. References
(4–7) illustrate many of the considerations discussed here and introduce a few
others. References (8) and (9) provide two other surveys dealing with the design
of experiments, including more detailed discussions than given here of specific
designs and their analysis. Reference (10) provides a relatively technical over-
view of experimental design concepts and plans. In addition, the books listed
and described in the general references give information concerning the techni-
cal aspects of experimental design.

2. Purpose and Scope of the Experiment

Designing an experiment is like designing a product. Every product serves a pur-
pose; so should every experiment. This purpose must be clearly defined at the
outset. It may, for example, be to optimize a process, to estimate the probability
that a component operates properly under a given stress for a specified number
of years, to maximize robustness of a new chemical formulation to variability in
raw materials or end use, or to determine whether a new drug or medical treat-
ment is superior to an existing one. An understanding of this purpose is impor-
tant in developing an appropriate experimental plan.

In addition to defining the purpose of a program, one must decide on its
scope. An experiment is generally a vehicle for drawing inferences about the
real world, as expressed by some, usually quantitative, response (or perfor-
mance) variable. Since it is highly risky to draw inferences about situations
beyond the scope of the experiment, care must be exercised to make this scope
sufficiently broad. For example, when developing a new product, experimental
studies are often conducted on a smaller (eg, lab) scale, with the objective of scal-
ing up successful results to production. This is true whether the ‘‘product’’ is a
thermoplastic resin, food product, or a new drug. Thus, if the results are material
dependent, the material for fabricating experimental units must be as represen-
tative as possible of what one might expect to encounter in production. If the test
program were limited to a single batch of raw material, the conclusions might be
applicable only to that batch, irrespective of the sample size. Similarly, in decid-
ing whether or not a processing factor, such as temperature, should be included
as an experimental variable to compare different formulations, it must be
decided whether the possible result that one formulation outperforms another
at a particular temperature would also apply for other temperatures of practical
interest. If not, one should consider including temperature as an experimental
variable. In any case, one need keep in mind that the statistical inferences one
can draw from the experiment apply only to the range of conditions under which
the experiment was conducted.

3. Experimental Variables

An important part of planning an experimental program is the identification of
the controllable or ‘‘independent’’ variables (also known as factors) that affect the
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response and deciding what to do about them. The decision as to how to deal with
each of the candidate variables can be made jointly by the experimenter and the
statistician. However, identifying the variables is the experimenter’s responsibil-
ity. (Tools such as the fishbone diagram and brainstorming can be used to facil-
itate the process.) Controllable or independent variables in a statistical
experiment can be dealt with in four different ways, as described next. The
assignment of a particular variable to a category often involves a trade-off
among information, cost, and time.

3.1. Primary Variables. The most obvious variables are those whose
effects on the expected or mean performance of the response variable(s) are to
be evaluated directly; these are the variables that, most likely, created the
need for the investigation in the first place. Such variables may be quantitative,
such as catalyst concentration, temperature, or pressure, or they may be quali-
tative, such as method of preparation, catalyst type, or batch of material.

Quantitative controllable variables are frequently related to the response
variable by some assumed statistical relationship or model. The minimum num-
ber of conditions or levels per variable is determined by the form of the assumed
model. For example, if a straight-line relationship can be assumed, two levels (or
conditions) may be sufficient; for a quadratic relationship a minimum of three
levels is required. However, it is recommended that additional points, above
the minimum, be included so as to allow assessment of the adequacy of the
assumed model (see RESPONSE SURFACE DESIGNS).

Qualitative variables can be broken down into two categories. The first con-
sists of those variables whose specific effects on the mean response are to be com-
pared directly; eg, comparison of the impact on average performance of two
proposed preparation methods or of three catalyst types. The required number
of conditions for such variables is generally evident from the context of the
experiment. Such variables are sometimes referred to as fixed effects or Type I
variables.

The second type of qualitative variables are those whose individual contri-
butions to variability or noise in the responses are to be evaluated. The specific
conditions of such variables are generally randomly determined. Material batch
is a typical example. Usually, one is not interested in the behavior of the specific
batches per se that happened to have been selected for the experiment. Instead,
one wishes to quantify the variation in performance, as measured by the var-
iance (or, its square root, the standard deviation) caused by differences among
batches. The batches used in the experiment are selected randomly (or as close
to randomly as is practically feasible) from a large population of batches. It is
desirable to have a reasonably large sample (eg, five or more batches) in order
to obtain an adequate degree of precision in estimating the variability in
response attributable to such variables. These variables are generally referred
to as random effects or Type II variables. Differentiation between fixed and ran-
dom effect variables is an important consideration both in the design of the
experiment, and in the analysis of the resulting data.

When there are two or more variables, they might interact with one
another, ie, the effect of one variable upon the response depends on the value
of the other variable. Figure 1 shows a situation where two noninteracting vari-
ables, preparation type and temperature, independently affect time to rupture,
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ie, the effect of temperature on time to rupture is the same for both preparation
types. In contrast, Figure 2 shows two examples of interactions between prepara-
tion and temperature.

An important purpose of a designed experiment is to obtain information
about interactions among the primary variables which is accomplished by vary-
ing factors simultaneously rather than one at a time. Thus in Figure 2, each of
the two preparations would be run at both low and high temperatures using, for
example, a full factorial experiment (see FORMAL EXPERIMENTAL PLANS).

3.2. Background Variables and Blocking. In addition to the primary
controllable variables there are those variables, though not of primary interest,
that cannot, and perhaps should not, be held constant in the experiment. Such
variables are present in real world situations, where they introduce added varia-
bility in the response, and where, unlike the experiment, they generally cannot
be controlled. They are often referred to as ‘‘noise variables’’. Typical examples
are day-to-day, operator-to-operator, machine-to-machine, and batch-to-batch

Time to
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Fig. 1. Situation with no interaction between variables.
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Fig. 2. Situation with interactions between variables, where in (a) an increase in tem-
perature is beneficial for preparation A but does not make any difference for preparation
B, and (b) an increase in temperature raises time to rupture for preparation A but
decreases it for preparation B.
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variability. (Some of these variables, in fact, might be the same as the ones that
we had identified in the earlier discusssion as Type II primary variables. The dif-
ference is that, previously, we were interested in assessing their impact on
response variability, per se. Now our major concern is, not so much in their
evaluation, but just to ensure that they do not ‘‘mess up’’ our evaluation of the
primary variables).

In particular, it is crucial that such background, or noise, variables are
separable from (in technical terms, not ‘‘confounded’’ with) the primary variables
in the experiment. For example, if preparation A were run only on day 1 and pre-
paration B only on day 2, it would not be possible to determine how much of any
observed difference in response between the two preparations is due to normal
day-to-day process variation.

Background variables may be introduced into the experiment in the form of
experimental blocks. An experimental block represents a relatively homogeneous
set of conditions within which different conditions of the primary variables are
compared. For example, if one expects day-to-day variation in the response, a
day might be taken as an experimental block over which different conditions of
the primary variables are compared.

A specific example of blocking arises in the comparison of wear for different
types of automobile tires. Tire wear may vary from one automobile to the next,
irrespective of the tire type, because of differences among automobiles, variabil-
ity among drivers, and so on. Assume, for example, that for the comparison of
four tire types (A, B, C, and D), four automobiles (1, 2, 3, and 4) are available.
A poor procedure would be to use the same type of tire on each of the four wheels
of an automobile varying the tire type among automobiles, as in the following
tabulation:

Such an assignment is undesirable because the differences between tires cannot
be separated from the differences between automobiles in the subsequent data
analysis. Separation of these effects can be obtained by treating automobiles
as experimental blocks and randomly assigning tires of each of the four types
to each automobile as follows:

The above arrangement is known as a randomized block design.

Automobile

1 2 3 4
A B C D
A B C D
A B C D
A B C D

Automobile

1 2 3 4
A A A A
B B B B
C C C C
D D D D
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The symmetry of the preceding example is not always found in practice. For
example, there may be 6 tire types under comparison and 15 available auto-
mobiles. Tires are then assigned to automobiles to obtain the most precise
comparison among tire types, using a so-called incomplete block design. Similar
concepts apply if there are two or more primary variables, rather than one, as
was the case in the tire example.

A main reason for running an experiment in blocks is to ensure that the
effect of a background variable does not contaminate evaluation of the effects
of the primary variables. Blocking, moreover, removes the effect of the blocked
variables from the experimental error also, thus allowing more precise estima-
tion of the experimental error and, as a result, more precise estimates of the
effects of the primary variables. Finally, in many situations, the effect of the
blocking variables on the response can also be readily evaluated, an important
added bonus for blocking.

In some situations, there may be more than one background variable whose
possible contaminating effect is removed by blocking. Thus in the automobile tire
comparison, the differences between wheel positions may be of concern in addi-
tion to differences between automobiles. In this case, wheel position might be
introduced into the experiment as a second blocking variable. If there are four
tire types to be compared, this might be done by randomly assigning the tires
of each of the four types according to the following plan, known as a Latin square
design:

In this plan, the effects of both automobile and wheel position are controlled by
blocking. However, it should be kept in mind that for the Latin square design, as
for various other blocking plans, it is generally assumed that the blocking vari-
ables do not interact with the primary variable to be evaluated.

3.3. Uncontrolled Variables and Randomization. A number of
further variables, such as ambient conditions (temperature, pressure, etc), can
be identified but not controlled, or are only hazily identified or not identified at
all but affect the results of the experiment. To ensure that such uncontrolled
variables do not bias the results, randomization is introduced in various ways
into the experiment to the extent that this is practical.

Randomization means that the sequence of preparing experimental units,
assigning treatments, running tests, taking measurements, etc., is randomly
determined, based, eg, on numbers selected from a random number table. The
total effect of the uncontrolled variables is thus lumped together as unaccounted
variability and part of the experimental error. The more influential the effect
of such uncontrolled variables, the larger the resulting experimental error,
and the more imprecise the evaluations of the effects of the primary variables.

Wheel position Automobile

1 2 3 4
1 A D C B
2 B A D C
3 C B A D
4 D C B A
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Sometimes, when the uncontrolled variables can be measured, their effect can be
removed statistically from experimental error. In addition, note that measure-
ment error on the response variable (and, sometimes, on the controllable vari-
ables), is a further, often small, component of experimental error.

Background variables could also be introduced into the experiment by ran-
domization, rather than by blocking techniques. Thus in the previous example,
the four tires of each type could have been assigned to automobiles and wheel
positions completely randomly, instead of treating automobiles and wheel posi-
tions as experimental blocks. This could have resulted in an assignment such as
the following:

Both blocking and randomization generally ensure that the background vari-
ables do not contaminate the evaluation of the primary variables. Randomization
sometimes offers the advantage of greater simplicity compared to blocking. How-
ever, under blocking the effect of a background variable is removed from the
experimental error (as well as being measurable), whereas under randomization
it usually is not. Thus the aim might be to remove the effects of the one or two
most important background variables by blocking, while counteracting the
possible contaminating effect of others by randomization.

3.4. Variables Held Constant. Finally, some variables should be held
constant in the experiment. Holding a variable constant limits the size and com-
plexity of the experiment but, as previously noted, can also limit the scope of
the resulting inferences. The variables to be held constant in the experiment
must be identified and the mechanisms for keeping them constant defined. The
experimental technique should be clearly specified at the outset of the experi-
ment and closely followed.

4. Experimental Environment and Constraints

The operational conditions under which the experiment is to be conducted
and the manner in which each of the factors is to be varied must be clearly
spelled out.

All variables are not created equal; some can be varied more easily than
others. For example, suppose that oven rack position and baking temperature
are two experimental variables in a study to determine recommended baking
instructions for a new cake mix. A change in oven rack position can be made
in a matter of seconds. Changing the oven temperature, however, adds costly
time to each experimental run, since additional time is required to reach the

Wheel position Automobile

1 2 3 4
1 B D B D
2 A D D A
3 C C A D
4 B B C A
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target temperature. Also, in many experiments it is easier to change pressure
than it is to change temperature—due to the difference in time that it takes to
stabilize at the new condition. In such situations, completely randomizing the
sequence of testing is impractical. However, basing the experimental plan on
convenience alone may lead to ambiguous and unanalyzable results. For exam-
ple, if the first one-half of the experiment is run at one temperature and the sec-
ond half at another temperature, it may not be possible to tell whether the
observed difference in response results from the difference in temperature or
from some other factors that varied during the course of the experiment such
as raw material (cake batter), ambient conditions (humidity), or operator tech-
nique. Thus the final experimental plan must be a compromise between
cost and information. The experiment must be practical to run, yet still yield
statistically valid results (11,12).

Practical considerations enter into the experimental plan in various other
ways. In many programs, variables are introduced at different operational levels.
For example, in evaluating the effect of alloy composition, oven temperature, and
varnish coat on tensile strength, it may be convenient to make a number of mas-
ter alloys with each composition, split the alloys into separate parts to be sub-
jected to different heat treatments, and then cut the treated samples into
subsamples to which different coatings are applied. Tensile strength measure-
ments are then obtained on all coated subsamples.

Situations such as the preceding arise frequently in practice and are
referred to as split-plot experiments. The terminology results from the agricul-
tural origins of experimental design, eg, a farmer needed to compare different
fertilizer types on a plot of land with varying normal fertility. A characteristic
of split-plot plans is that more precise information is obtained on the low level
variables (varnish coats in the preceding example) than on the high level vari-
ables (alloy composition). The split-plot nature of the experimental environment,
if present, is important information, both in the planning and in the analysis of
the experiment.

4.1. Prior Knowledge. The experimenter should draw on subject mat-
ter expertise when selecting the response variables, design variables, and vari-
able ranges for experimentation. When selecting the response variable, for
example, there may be prior knowledge regarding the need for data transforma-
tion. For selection of variable ranges, prior knowledge is often available concern-
ing the expected response outcome at certain experimental conditions. For
example, some combinations of conditions might be known to yield poor results
or might not be attainable with the equipment available, or worse yet, could
result in endangering the plant. Furthermore, all proposed conditions in the
experiment need to make sense. For example, a misguided proposed experiment
had a condition that required a resistance of 50 O for a circuit without resistors.
Clearly, unreasonable or hazardous conditions must be omitted from the experi-
mental design, irrespective of whether they happen to coincide with a standard
statistical pattern. Thus the experiment must be adjusted to accommodate
reality and not the reverse. This can be achieved by adjusting variable ranges
to obtain a feasible design space, or alternatively, choosing an experimental
design plan that accomodates asymmetric constraints in the design space (see
OPTIMAL DESIGNS).
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4.2. Response Variables. A clear statement is required of the perfor-
mance characteristics or dependent variables to be evaluated as the experimen-
tal response. Even a well-designed experiment fails if the response cannot be
measured properly. Frequently, there are a number of response variables; for
example, tensile strength, yield strength, percent elongation, etc. It is important
that standard procedures for measuring each variable be established and docu-
mented. Sometimes the response is on a semiquantitative scale; eg, material
appearance may be in one of five categories, such as outstanding, superior,
good, fair, and poor. In this case, it is particularly important that standards
that define (and perhaps illustrate) each of these categories are developed initi-
ally, especially if judgments are to be made at different times and perhaps by dif-
ferent observers. Consideration need also be given to ensuring that the response
variables are measured consistently, and in a well-defined manner, throughout
the course of the experiment.

4.3. Types of Repeat Information. The various ways of obtaining
repeat results in the experiment need to be specified. Different information
about repeatability is obtained by (1) taking replicate measurements on the
same experimental unit, (2) cutting a sample in half at the end of the experiment
and obtaining a reading on each half, and (3) taking readings on two samples
prepared independently of one another, eg, on different runs, at the same target
conditions. Often, there is greater homogeneity among replicate measurements
on the same sample than among measurements on different samples. The latter
reflect the random unexplained variation of repeat runs conducted under identi-
cal conditions. A skillfully planned experiment imparts information about each
component of variability, if such information is not initially available, and uses
a mixture of replication and repeat runs to yield the most precise information for
the available testing budget. The way in which such information is obtained
must also be known to perform a valid analysis of the results.

4.4. Preliminary Estimates of Repeatability. Initial estimates of re-
peatability should be obtained before embarking on any significant test program.
Such information may be available from previous testing; but if not, a variance
component study should be conducted. Its purpose is to validate that all critical
experimental variables have been identified. Additionally, this study will
quantify the experimental noise that can be expected due to (1) an inability to
reproduce target conditions of critical variables (known as reproducibility) and
(2) nonhomogeneity of the samples or measurement error (known as repeatabil-
ity). The first step in conducting the variance component study is to collect sam-
ples from preliminary runs at different times, under supposedly identical
conditions. Each of these samples is then tested multiple times (or in the case
of a destructive test method, homogenous subsamples are tested from each of
the original samples). A variance component analysis of the resulting data
decomposes and quantifies the amount of variability in each response variable
due to differences between experimental runs versus test variation. If the results
show that the ‘‘run-to-run’’ variability is high, then one might conclude that the
important variables that affect the results have not been identified, and further
research may be needed before the proposed experiment can commence. Alterna-
tively, if the measurement variability is unsatisfactory, then it may be appropri-
ate to improve precision by taking multiple measurements of the response
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variable and use the average of these measurements as the prime response in the
subsequent analyses of the experimental results. The process of establishing the
precision of a measurment process in advance of conducting the experiment has
become known as gage R&R (reproducibility and repeatability) studies.

4.5. Consistent Data-Recording Procedures. Clear procedures for
recording all pertinent data from the experiment must be developed and docu-
mented. These should include provisions not only for recording the values of
the measured responses and the desired experimental conditions, but also the
experimental conditions that actually occurred, if these differ from those
planned. It is generally preferable to use the values of the actual, rather than
the aimed-at, conditions in the statistical analysis of the experimental results.
For example, if a test was supposed to have been conducted at 1508C but was
run at 148.38C, the latter temperature would be used in the analysis. (In addi-
tion, it is also often instructive to conduct an analysis based upon the planned
variable settings so as to compare the estimated experimental error standard
deviations. The difference in the resulting two estimates reflects the variability
in the response that is introduced due to not meeting the desired settings.)

In experimentation with industrial processes, equilibrium should generally
be reached before the responses are measured. This is particularly important
when complex chemical reactions are involved. The values of other variables
that might affect the responses should also be recorded, if possible. For example,
although it may not be possible to control the ambient humidity, its value should
be measured if it might affect the results. In addition, variations in the factors to
be held constant, special happenings (eg, voltage surges), and other unplanned
events should be recorded. The values of such covariates can be factored into
the statistical analysis (possibly by performing a so-called covariance analysis),
thereby reducing the unexplained variability or experimental error. If the covari-
ates do indeed have an effect, this leads to more precise evaluations of the pri-
mary variables. Alternatively, such covariates may be related to the
unexplained or residual variation that remains after the statistical analysis of
the experimental results, using graphical or other techniques.

5. Stagewise Experimentation

Contrary to popular belief, a statistically planned experiment does not require all
testing to be conducted at one time. As the eminent statistician, George Box and
his associates have pointed out repeatedly [eg, (13)], the design of experiments is
a catalyst for the general scientific learning process. Thus, much experimenta-
tion should be sequential, involving, for example, stages of 8–20 runs. This per-
mits changes to be made in later tests based on early results and allows
preliminary findings to be reported. For example, an experiment to improve
the properties of a plastic material involved such variables as mold temperature,
cylinder temperature, pressure, ram speed, and material aging. The experiment
was conducted in three stages. After the first stage, the overall or main effects of
each of the variables on the experimental responses were evaluated; after the
second stage, interactions between pairs of variables were analyzed, and after
the third stage nonlinear effects were assessed. Each stage involved about a
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month of elapsed time, and management was periodically apprised of progress. If
unexpected results had been obtained at an early stage, eg, poor results at one of
the selected ram speeds, the general plan for the later stages of the experiment
might be changed.

Whether or not to conduct an experiment in stages depends on the program
objectives and the specific situation; a stagewise approach is recommended when
units are made in groups or one at a time and a rapid feedback of results is pos-
sible. Running the experiment in stages is also attractive in searching for an
optimum response, because it might permit moves closer to the optimum from
stage to stage. On the other hand, a single-stage experiment may be desirable
if there are large start-up costs at each stage or if there is a long waiting time
between the start of the experiment and the measurement of the results. This
is often the case in many agricultural experiments and also when the measured
variable is product life.

If the experiment is conducted in stages, precautions must be taken to
ensure that possible differences between the stages do not invalidate the results.
Appropriate procedures to compare the stages must be included, both in the test
plan and in the statistical analysis. For example, some baseline standard test
conditions, known as controls, may be included in each stage of the experiment.

For further discussion of stagewise experimenation, and its role as a cata-
lyst to learning by the scientific method, see (Ref. 13). Also Refs. 14–16 and the
book by Myers and Montgomery (see General References) discuss the concept of
evolutionary operations—a stagewise approach for seeking an optimum directly
on an operating manufacturing process or pilot line.

6. Other Considerations

Many other questions must be considered in planning the experiment:

1. What is the most meaningful way to express the controllable or indepen-
dent variables? For example, should current density and time be taken
as the experimental variables, or are time and the product of current den-
sity and time the real variables impacting the mean response? Judicious
selection of the independent variables often reduces or eliminates interac-
tions between variables, thereby leading to a simpler experiment and ana-
lysis. Also interrelationships among variables need to be recognized. For
example, in an atomic absorption analysis, there are four possible vari-
ables: air-flow rate, fuel-flow rate, gas-flow rate, and air/fuel ratio, but
there are really only two independent variables.

2. What is a proper experimental range for the selected quantitative control-
lable variables? Assuming a linear relationship between these variables
and performance, the wider the range of conditions or settings, the better,
usually, are the chances of detecting the effects of the variable. However,
the wider the range, the less reasonable is the assumption of a linear or
other simple relationship between the experimental variables and the
response variables. Also, one generally would not want to conduct experi-
ments appreciably beyond the range of physically or practically useful
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conditions. The selection of the range of the variables depends in part on
the ultimate purpose of the experiment: is it to learn about performance
over a broad region (eg, to establish a ‘‘response library’’, that provides
information of what to expect under a variety of possible experimental con-
ditions), or is it to search for an optimum condition? A wider range of experi-
mentation would be more appropriate in the first case than in the second.

3. What is a reasonable statistical model, or equation form, to approximate
the relationship between the independent variables and each response
variable? The more complex the assumed model, the more runs are usually
required in the experiment in order to fit the model. We shall consider this
topic further in the discussion of response surface designs.

4. What is the desired degree of precision of the statistical estimates and con-
clusions based upon the analyses of the experimental results? The greater
the desired precision, the larger is the required number of experimental
runs. Statistical precision is, most frequently, quantified by a stastistical
confidence interval. Such an interval expresses, eg, the uncertainty in
the estimated mean value of the response variable for a specified set of con-
ditions, in the estimated coefficients of a fitted statistical model, or in the
estimated experimental error standard deviation.

5. Are there any benchmarks of performance? If so, it might be judicious to
include these conditions in the experiment in order to compare the results
with those from past experience (and seek an explanation so as to remove
the causes of differences larger than what one might expect from random
variation).

6. What statistical techniques are required for the analysis of the resulting
data, and can these tools be rapidly brought to bear after the experiment
has been conducted (see Statistical Tools)?

7. Formal Experimental Plans

The test plan is developed to best meet the goals of the program. This might
involve one of the standard plans developed by statisticians and practitioners.
Such plans are described in varying detail in numerous texts on the design of
experiments. In Table 1, we provide a comprehensive guide to such texts, indicat-
ing where to find more information about specific designs or design features, and,
therefore, present these plans only briefly here. As already suggested, in prac-
tice, one frequently would use combinations of such plans in a stagewise
approach–eg, a factorial experiment conducted in blocks or a central composite
design using a fractional factorial base.

7.1. Blocking Designs. As previously described, blocking is used to
remove the effect of extraneous variables from experimental error. Well-known
blocking designs include randomized block designs and balanced incomplete
block designs to remove the effects of a single extraneous variable, Latin and
Youden square designs to remove the effects of two extraneous variables, and
Greco-Latin and hyper-Latin square plans to remove the effects of three or
more extraneous variables.
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Table 1. Summary of Experimental Design Textsa

Subject coverage

General
reference
(see text)

Blocking
designs

Factorial
designs

Fractional
factorial
designs

Response
surface
designs

Split-plot
situa-
tions

Nested
situa-
tions

Taguchi
approach

Number
of pages

Emphasis on
calculations
and analysis

Approximate
number of
references Examples

Tech-
nical
levelb

Applications
emphasisc

Anderson and
McLean

M–H M–H M–H M–H H M–H N 418 L–M 150 M I G/I

Berger and Maurer L M L–M M L M M 480 M 55 L–M E–I G/I
Box, Hunter

and Hunter
M M L–M M–H N L N 653 L 150 M–H E G/I

Cox L–M L–M L–M L M N N 308 N 100 M E G
Daniel N–L H H L L–M N N 294 L–M 100 M I I
Davies and

co-workers
M–H M–H M–H M–H N L–M N 656 L–M 50 M I I

Del Vecchio L M L–M L–M N N M 175 L 11 M E I
Diamond L L–M M–H L–M N L–M N 423 M 20 M E–I I
Hicks and Turner M–H M–H M L–M M–H M–H M–H 565 H 100 M I G/I
Kuehl M–H M–H M M–H M–H M–H L–M 666 M 240 M I G
Lipson and Sheth N L L N N N N 518 M 100 M E I
Lochner and Matar L–M M M L N N H 241 L 50 M–H E I
Mason, Gunst and

Hess
M M–H M M M M–H N–L 692 M–H 120 M E–I I

Mendenhall L–M L–M L–M L–M L L–M N 464 L–M 100 M I G/I
Moen, Nolan

and Provost
M M–H M L L M–H L–M 414 L 30 M–H E I

Montgomery M–H M–H M–H M–H M–H M–H M 684 M–H 160 M I I
Myers and L L–M L–M H M N M–H 798 M–H 255 M I I

Montgomery
Robinson L L–M L–M L–M L L–M L–M 265 N–L 100 H I G/I

Schmidt and
Launsby

L M M M N L M 767 L–M 100 H E–I I

Wu and
Hahamada

M–H M–H H M–H L L–M M–H 630 M–H 150 M I G/I

aN is none; L, little; M, moderate; and H, heavy; see General References for descriptions.
bE is elementary, no background in statistics needed; and I is intermediate, assumes one or two elementary statistics courses.
cG is general; I, industrial/engineering/scientific.
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7.2. Factorial and Fractional Factorial Designs. These very popular
designs apply for two or more primary independent variables. Factors are varied
simultaneously rather than one at a time, so as to obtain information about inter-
actions among variables and to obtain a maximum degree of precision in the
resulting estimates. In complete factorial plans, all combinations of conditions
of the independent variables are run. For example, a 3� 3� 2� 2 complete or
full factorial design requires running all 36 combinations of four variables at
three, three, two, and two conditions, respectively.

A fractional factorial design is often used when there is a large number of
combinations of possible test points, arising from many variables or many condi-
tions per variable or both, and it is not possible or practical to run all combina-
tions. Instead, a specially selected fraction is run. For example, a (1/2)26

fractional factorial plan is one where there are six variables each at two condi-
tions, resulting in a total of 64 possible combinations, but only a specially
selected one-half, or 32, of these combinations are actually run. The selection
of test points is based upon the specific information that is desired from the
experiment. For example, for a (1/2)26 fractional factorial plan one can indepen-
dently estimate the impact of all two-factor interactions, but it is assumed that
higher order interactions (ie, interactions among three or more factors) are neg-
ligible. The larger the number of primary variables, the greater is the degree of
fractionation that is possible.

Fractional factorial plans are especially useful for screening purposes when
it is desired to find those variables that have the greatest impact (over the spe-
cified experimental region). An additional advantage of full factorial and frac-
tional factorial designs is that by providing a comprehensive scanning of the
experimental region they can often identify, without formal analyses, a small
number of test conditions that appear to provide especially favorable results.
The region around these conditions would then be explored further in subse-
quent experimentation.

The most frequently used fractional factorials are for situations in which all
variable are at two conditions (or levels). Test plans (providing specific test
points) for this situation, together with their properties, are provided in most
texts on the design of experiments (see Table 1) and by computer programs for
generating experimental designs (see COMMERCIAL SOFTWARE). A popular family of
two-level fractional factorial designs, known as Plackett-Burman plans, permit a
large number of variables to be evaluated in a small number of test runs and is
discussed in many standard texts. Next in popularity are fractional factorial
plans with all variables at three levels. In addition, some situations, especially
ones involving qualitative experimental variables, call for variables at a varying
number of levels. These are discussed in more advanced texts.

Detailed discussions of fractional factorial designs are provided in books by
Daniel, and, at a more advanced level, by Wu and Hamada, (see General Refer-
ences). Reference (17) provides a comprehensive catalogue of fractional factorial
designs, including three- and mixed-level plans and their properties.

7.3. Response Surface Designs. These designs apply when one is
dealing principally with quantitative independent variables (the x’s), such as
temperature and pressure, that one wishes to relate to the response variable(s)
(y or y’s), assuming some statistical model. When the form of this model is known
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from physical considerations, then one would want to use that model form (if it is
not too complicated). As already suggested, when the form of the relationship is
not known, as is frequently the case, one instead approximates it by a polynomial
(Taylor series approximation) model. A first-order linear model for k independent
variables is expressed by the simple relationship

y ¼ �0 þ
Xk
j¼1

�jxj þ " ð1Þ

where e represents the model error, which results from any unexplained be-
havior in y, and is usually assumed to be normally distributed with constant
variance. This model error can result from experimental noise, exclusion of
important x’s in the model, or the need for higher order terms in the model.
The results of the experiment are used to estimate the unknown b’s using
least-squares regression analysis (see STATISTICAL TOOLS).

However, the model that is most frequently used in practice is the second-
order model

y ¼ �0 þ
Xk
j¼1

�jxj þ
Xk
j¼1

�jjx
2
j þ

X
i

Xk
< j¼2

�ijxixj þ " ð2Þ

which includes linear (xj), curvature (x2j ), and interaction (xixj) terms.
An intermediate model might include the interaction (or cross-product)

terms, but not the quadratic ones.
The choice of an appropriate model merits considerable reflection, based on

both physical and empirical considerations. As already suggested, a linear
model may provide a reasonable approximation over a narrow range, but a
second-order, or more complex, relationship might be called for over a broader
range. Also, often based upon physical considerations, an improved, or simpler,
representation might be gained by transforming the original x’s to some other
scale (such as taking logarithms or reciprocals). In addition, transformations of
the y’s is also frequently beneficial.

Two-level full and fractional factorial designs can be used to explore first-
order response surface models. Three level full factorial and some fractional fac-
torial designs apply for second-order models. However, these may require more
experimental points than are feasible from a practical viewpoint. For this and
other reasons, specialized designs have been developed for response surface ana-
lysis, especially for second-order models. Most popular among these are the so-
called central composite (or Box) designs and the Box-Behnken designs.

Response surface designs are discussed in many books on experimental
design (see Table 2), and in detail in the book by Myers and Montgomery,
(see General References). In addition, various recent developments are reviewed
in (18).

7.4. Optimal Designs. Another type of experimental design, used prin-
cipally for response surface exploration, and favored by some statisticians, are
the so-called ‘‘optimal designs’’. Such designs are generally computer-generated
and have properties such as minimizing the variance of the predictions over a
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Table 2. Commercial Software Comparisona

Design-
ease 6.0.6

Design-
expert 6.0.5

DOE Pro
XL 3.0 ECHIP JMP 4.0.4

Minitab
13

STATGRAPHICS
plus 5 (quality
and design)

Design feature
blocking H H N/A H H H H
randomization H H L H H H H

Design Type
full and fractional factorials H H H H H H H
central composite N/A H H M H H H
Box-Behnken N/A H M H H H H
mixture N/A H N/A H L M M
mixture-process N/A H N/A H N/A M N/A
Taguchi orthogonal arrays H H H H H H H
optimal designs L L N/A M N/A N/A N/A

Analysis methods
graphical tools H H H H H H H
ANOVA M M H H H H H
regression analysis M H H H H H H

Software features
ease of using design features H H M H L M H
general purpose software? No No No No Yes Yes Yes
priceb for single user license
(in U.S. dollars)

$495 $995 $199 $1495 $895c $1195 $999

vendor (see text for more
information)

Stat-Ease,
Inc.

Stat-Ease,
Inc.

Air Academy
Associates

ECHIP,
Inc.

SAS Institute
Inc.

Minitab
Inc.

Manugistics,
Inc.

aTable key: ‘‘N/A’’¼ feature not available; ‘‘L’’¼ limited capability; ‘‘M’’¼ moderate capability; ‘‘H’’¼ high capability.
bThe quoted price is for commercial (nonacademic) users. An academic discount is available from most vendors. Quoted prices are as of March, 2002.
cECHIP license must be renewed annually, at a cost of $150, which includes software upgrades. Other products are purchased, with some additional cost
to upgrade to newer version.
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specified ‘‘design region’’ (the so-called G-optimal design). The best-known
design of this type is the D-optimal design, which ‘‘minimizes the volume of
the joint confidence region on the vector of regression coefficients’’ (see book by
Montgomery in General References).

Optimal designs are of particular value in situations when a full factorial,
fractional factorial, Box, Box-Behnken (or other ‘‘symmetrical-type’’) design is
not practical or desirable. Thus, in various applications, some points in the
design space defined by, say, a full factorial experiment, might be uninteresting,
or inappropriate. This might be because, based upon prior knowledge, the results
at that condition are fully predictable, or, perhaps, known to be inferior. Another
possibility might be that a particular experimental test condition might be poten-
tially hazardous. Sometimes, such undesired points can be avoided by an appro-
priate redefinition of the experimental variables. If this is not possible, the
resulting design region might be asymmetrical. For this case, optimal designs
might be especially useful.

In addition, optimal designs are employed for situations in which, based
upon process knowledge, one wishes to fit a nonstandard model (ie, one that
assumes something other than a first- or second-order polynomial model with
normally distributed errors), or in which one is limited to running a specified
number of test points. The book by Montgomery (see General References) pro-
vides further information and a specific example. Additional detail is provided
in the book by Myers and Montgomery (see General References). Optimal designs
can be generated by the software package ECHIP, and, in a more limited man-
ner, by Design-Ease and Design-Expert (see Commercial Software).

7.5. Mixture Designs. These designs arise when the variables under
consideration are the ingredients of a product that must add to 100%, for exam-
ple in an experiment to learn how to optimize the baking of a cake, the relative
impact of each of the ingredients (baking powder, shortening, flour, sugar, milk,
water, etc) might need to be assessed. Often, an experimenter will want to study
both mixture and nonmixture variables. In the previous example, one may wish
to assess the effect of varying bulk density of the flour or the fat content of the
milk, in addition to the relative percentages of the cake ingredients. These
designs are referred to as mixture-process designs. Both mixture and mixture-
process designs are especially relevant in the evaluation of chemical processes.
Most standard texts do not discuss these plans. However, detailed expositions
are provided in (19) and (20).

7.6. The Taguchi Approach. An eminent Japanese engineering profes-
sor and advocate for quality improvement, Genichi Taguchi, has been an impor-
tant proponent of planned experimentation in product design, development, and
evaluation. In fact, the influence of Taguchi and his followers has been an impor-
tant factor in popularizing the use of experimental design in industry. Taguchi
has especially promoted ‘‘orthogonal arrays’’, a family of experimental designs
closely related to fractional factorial plans.

Taguchi has also stressed the role of experimental design in identifying the
process conditions that show the greatest consistency, or are most robust, in the
face of variability in manufacturing conditions and customer use. The goal is to
achieve similar and desirable product performance despite uncontrollable varia-
tion due to such noise variables as incoming raw materials, and the ambient
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conditions under which a product is to be used. For example, an automobile
battery needs to work well, irrespective of whether a car is driven in Florida
or Minnesota.

In particular, Taguchi has introduced experimental plans that help identify
the conditions (ie, settings of the primary variables) that minimize the variability
in the noise variables, thus elevating the role of such variables from nuisance fac-
tors whose impact needs merely to be neutralized by appropriate blocking, etc, in
the experimental plan.

Many classical blocking designs, such as incomplete block and Latin square
designs assume that there is no interaction between the primary variables and
the noise variables and that the variability generated by the noise variables is
the same for all conditions of the primary variables. These plans can, therefore,
not be used for identifying the conditions of the primary variables that minimize
variability. Instead, Taguchi has proposed ‘‘robust parameter designs’’ for this
purpose, including the concept of ‘‘inner and outer array’’ plans. In such designs,
the noise variables (outer array) are evaluated for a series of conditions of the
primary variables (inner array). Typically, the inner array is in the form of a
fractional factorial plan, while the outer array is a full factorial plan. These
designs have been criticized due to the fact that, although they provide the
desired information about the noise variables at various conditions of the pri-
mary variables, they tend to provide limited information about interactions
among primary variables (due to the fractionization of the inner array). Also,
though appropriate for some ‘‘split-plot’’ situations, these plans frequently lead
to a large number of test conditions. Instead, some ‘‘combined array’’ experimen-
tal plans have been proposed to meet Taguchi’s basic goal, but in a more efficient
manner; see the book by Montgomery (General References) for a more detailed
discussion.

Taguchi has also proposed various methods of data analysis and other con-
cepts, some of which are controversial. These include the concept of combining
the mean and variability in the response variable in the form of the ‘‘signal/
noise ratio,’’ which is to be maximized. This concept has been criticized on the
grounds that it might be more meaningful to evaluate the mean response and
the variability separately, rather than combining them into a single metric.

A series of articles that describe, illustrate, and critique Taguchi methods is
provided in (21). Most texts on design of experiments published or republished
since around 1990 contain discussions of the Taguchi approach. In addition, var-
ious books devoted exclusively (or principally) to Taguchi methods, including
Taguchi’s approach to experimental design have recently appeared [(22–26)
and Lochner and Matar, see General References].

8. Combinatorial Chemistry

Technology now allows us to search vast experimental regions to identify mate-
rials with desired properties. This is the realm of ‘‘combinatorial chemistry’’, also
known as high throughput screening (or ‘‘finding a needle in a haystack’’ experi-
mentation). In fact, combinatorial chemistry ‘‘is now practical because of the con-
vergence of low-cost computer systems, reliable robotic systems, sophisticated
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molecular modeling, statistical experimental strategies, and database software
tools’’ (27).

Early applications of combinatorial chemistry were targeted at identifying
potentially promising drugs by pharmaceutical companies. However, in recent
years, similar approaches are being used by chemical and other companies for
new product discovery and development. Frequently, the goal is to establish a
library of performance responses for different material combinations. This
library can then be searched to rapidly develop a material that satisfies customer
specifications, possibly in some optimum manner—after, perhaps, a relatively
small amount of validation testing. Alternately, this information may be used
proactively to develop a new material with favorable properties that out-perform
the competition, or to find one ‘‘miracle combination’’.

Combinatorial chemistry for materials improvement has been made possi-
ble by the ability to make up and assess, possibly, hundreds of vials a day. How-
ever, the ‘‘experimental space’’ that one wishes to explore may consist of millions
of possible combinations of conditions. For example, in one typical application
(27), the experimental space consisted of the 2,916,000 possible combinations of

� Three qualitative formulation variables with 20, 20, and 10 conditions,
respectively.

� Three quantitative formulation variables, each with three conditions.

� Three quantitative process variables, each with three conditions.

Clearly, even with 100 vials per day, one can explore only a small fraction of
the possible conditions in the time that is generally available for such explora-
tions. Thus, one turns to the design of experiments and related methods to
help in making the testing maximally efficient. This has, in itself, generated a
variety of strategies for defining test points for combinatorial chemistry applica-
tions, see (27–30). Among these, only (27) discusses statistical plans, such as
fractional factorial designs, in some detail.

General design of experiment concepts have much applicability for combi-
natorial chemistry. For example, stage-wise experimentation, and the resulting
sequential learning process, discussed previously, is especially relevant in such
assessments. In an initial stage, one might consider the entire response surface
to identify potential regions that warrant further exploration. In subsequent
testing, one would home in on such promising regions with various stages of
further testing.

9. Statistical Tools for the Analysis of Designed Experiments

We have so far in this article made little mention of statistical tools for the ana-
lysis of experiments for two reasons. First, as stated at the outset, we feel that
the proper design of the experiment is more important than its analysis. Second,
various books on experimental design, including those in the General References,
provide ample descriptions of these methods. Thus, we provide only a brief sum-
mary. In particular, the analysis of most designed experiments involves a combi-
nation of three major types of tools: the analysis of variance, regression analysis,
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and graphical analysis. We will comment briefly on each. In so doing, we reiter-
ate that in stagewise experimentation such analyses are interspersed with the
experimental runs and, in fact, provide important inputs on how to proceed in
the next stage of testing.

The analysis of variance is, probably, the most frequently used tool for ana-
lyzing the results of a designed experiment. It is a formal statistical method that
breaks down the total observed variability in a response variable into separate
parts attributable to each of the sources of variation, based on an assumed sta-
tistical model. Thus, the analysis of variance isolates the variation due to the
main effects of each of the experimental variables and their interactions and
assess the ‘‘statistical significance’’ of each of these sources of variation. This
provides useful information about the relative importance in the experiment of
different effects and their interactions.

The results of an analysis of variance should, however, not be overinter-
preted because ‘‘statistical significance’’ does not necessarily imply practical
significance. In particular, a statistically significant result is one that is unlikely
to have occurred due to chance alone. It does not, per se, measure the magnitude
of the impact of the associated effect. For Type II variables, the analysis of
variance also provides insightful estimates, in the form of so-called ‘‘variance
components’’, of the variability attributable to individual sources of variation.

Regression analysis allows one to fit a relationship between a series of
experimental variables (x’s) and a response variable (y), which is especially rele-
vant for data from response surface designs. For such designs, regression analy-
sis allows one, for example, to estimate the unknown b’s in an assumed model,
such as the previously discussed second-order model, together with their asso-
ciated confidence bounds. This will permit prediction of an expected response
and/or variability for that response, also with statistical confidence bounds, for
a specified combination of the experimental variables, based upon the assumed
model. In fact, regression analysis has been referred to as ‘‘the workhorse of
statistical data analysis’’.

Sometimes, when one is searching over a vast experimental space, as is fre-
quently the case, for example, in combinatorial chemistry, the standard first-or
second-order polynomial models (even after transformations) are frequently
inadequate to relate the formulation and process variables to the material
response variables. Thus, one might need to supplement standard statistical
methods (such as regression analysis and analysis of variance) with more
advanced tools [such as MARS (multiple adaptive regression splines) (31)], to
obtain, at least approximate, smoothed representations of the response surface.

After a model is fitted, it is frequently desired to exercise it to find an opti-
mum condition, or set of experimental conditions. This would be the set of condi-
tions that minimizes or maximizes the response variable when one is considering
the average response, or the condition that minimizes the variability (or some
combination of the two); the book by Myers and Montgomery (see General
References) provides further discussion.

We strongly encourage graphical analyses to supplement the more formal
statistical analyses, and, on occasion, to take their place. To quote our former col-
league Wayne Nelson, one good graphical display is often worth a thousand sta-
tistics. For example, incisive multiple dimensional plots of the experimental
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results, or of the fitted regression analysis, can frequently be highly informative.
Also, half-normal probability plots (see the book by Daniel in General References)
provide information similar to a formal analysis of variance concerning the
relative importance of the individual sources of variation, but in graphical form.

Finally, we note that improved methods for the analysis of designed experi-
ments, frequently capitalizing on increased computations capabilities, continue
to be developed. A typical example is the use of Bayesian methods in finding
the active factors in fractionated screening experiments (32). Such new methods
are published in Technometrics, The Journal of Quality Technology, and other
technical publications.

10. Multiple Response Variables

The preceding discussion has assumed, by and large, that we are dealing with a
single response variable, although, in practice, this frequently is not the case. As
already mentioned, one may be interested in both the average and the variability
of the response variable (leading Taguchi to propose the controversial signal/
noise ratio, to combine these two variables into one for the purpose of analysis).
Moreover, often one is concerned with two or more performance variables, such
as, for example, the viscosity, tensile strength, ductility, etc, of a plastic material.
Multiple response variables complicate the analyses as well as the stagewise
development of the experimental plan, especially if we are seeking an optimum
experimental region (versus just developing a response library). The problem of
multiple response variables is discussed in the books by Wu and Hahmada and
by Myers and Montgomery (see General References). The tools of chemometrics
also have applicability in such situations.

11. Commercial Software for the Design and Analysis of Experiments

Numerous computer software packages have been developed to help generate
experimental designs, [see (33) for an evaluation of some early packages].
These vary greatly in price, computer platform, and level of technical sophistica-
tion assumed of the user. They are especially useful in performing the mechan-
ical tasks associated with the design and analysis of experiments, such as the
generation of a matrix of test points and the statistical analysis of the resulting
data. Computer software is needed for determining the optimum plans, discussed
above, that are often relevant for special situations (see also COMPUTER-AIDED

ENGINEERING). However, while almost all of these packages have features for gen-
erating full and fractional factorial, and response surface designs and the ortho-
gonal array plans advocated by Taguchi, only a few can generate optimal
designs.

Seven software packages were evaluated for their capabilities for the gen-
eration of experimental designs and for the analysis of the resulting data, as well
as their ease of use. This information, together with current cost, is summarized
in Table 2. This tabulation by no means provides an exhaustive list of currently
available commercial software packages. However, it does include the best
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known ones, and describes offerings with varying depths of capabilities and
costs, ranging from current single-user commercial license fees of $199 to $1495.

Note that four of the packages are specialized in the sense that their major
purpose is the design and analysis of experiments. In contrast, the other three
offerings (JMP, Minitab, and Statgraphics) are well-known general statistical
packages that are already in place in many facilities and that, among their
many features, have capabilities for the design and analysis of experiments
(the license fee shown in Table 2 is for the entire package).

12. Some Historical Background

Sir Ronald Fisher is generally regarded as the ‘‘founding father’’ of the design of
experiments, and wrote an early book on the subject (34). As previously indi-
cated, many of the initial applications were in agriculture. Application to indus-
try, in general, and the chemical industry, in particular, was recognized after
World War II, and was spurred on by important work by George Box, Cuthbert
Daniel, and Stuart Hunter, among others. Starting in the late 1970s, the pre-
viously mentioned work by Genichi Taguchi and his associates generated exten-
sive interest in experimental design in industry (as well as some controversy).
Most recently, the Six Sigma initiative (35) has resulted in focusing a great
deal of attention by some large corporations on the design of experiments. In
fact, the statistical design of experiments is one of the key items in the Six
Sigma ‘‘toolbox’’.
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GENERAL REFERENCES AND SOME RECOMMENDATIONS

This section provides a subjective summary and evaluation of books that mainly deal with
the application of experimental design to scientific, industrial, and general situations.
Books directed principally at educational, psychological, or related applications, and
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those dealing mostly with the theory of experimental design, or principally with the
analysis of experimental data, are omitted. Most of the books presume that the reader
has had at least one introductory course in statistics. Items in quotation marks are
taken directly from the book, generally from its preface. Table 1 provides a comprehen-
sive summary of the subject coverage, technical level, applications emphasis, etc of
these books. In addition, such journals as CHEMTECH, The Journal of Quality
Technology, and Technometrics (in increasing order of complexity) periodically carry
articles about experimental design.

The book by Box, Hunter and Hunter (1978) is, perhaps, the one that has become best
known among practitioners. It provides a good starting point for those with limited
knowledge of statistics, although its 653 pages may be a little foreboding. The current
and only edition, issued in 1978, does not cover various topics that have received sig-
nificant attention in recent years, such as the Taguchi approach and mixture designs.
However, a new edition is scheduled for 2003. Basic-to-intermediate offerings are also
provided in the recent books by Berger and Maurer (2002), and by Schmidt and
Launsby (2000).

The most elementary, and, as a consequence, least in-depth, overview discussion is pro-
vided in the 175 page introductory book by Del Vecchio (1997). At the other end of
the spectrum, those who wish an in-depth and topical, but still applications-oriented,
discussion might want to turn to the 684 page volume by Montgomery (2001), or the
630 page book by Wu and Hamada (2000).

Those interested in a particular type of experimental design might want to turn to a spe-
cialized text, as suggested in the discussion in this article and in Table 1. Thus, the
classic text by Daniel (1976) is especially strong on fractional factorial designs, and
Myers and Montgomery (2002) specializes in response surface experiments.

V. L. Anderson and R. A. McLean, Design of Experiments—A Realistic Approach, Marcel
Dekker, New York, 1974. This book provides an extensive exposition of experimental
design at a relatively elementary level. It includes most of the standard material, as
well as detailed discussions of such subjects as nested and split-plot experiments.
Restrictions on randomization receive special emphasis. Published in 1974, this book
does not include subsequent developments.

P. D. Berger and R. E. Maurer, Experimental Design with Applications in Management,
Engineering and the Sciences, Duxbury, Belmant, CA2002. The goal of this book is to
cover ‘‘the most important and commonly used methods in the field of experimental
design.’’ It claims ‘‘to minimize the amount of mathematical detail, while still doing
full justice to mathematical rigor. . .’’ and ‘‘to provide an intuitive understanding of
the principles.’’ Thus, it is intermediate between books that provide a simple introduc-
tory exposition and those that try to tell it all. An unusual feature is the concluding
chapter that provides a personalized assessment of the literature (mainly other books)
on experimental design. The other 14 chapters include ones on nested or hierarchal
designs and on Taguchi methods, as well as more standard discussions on factorial,
fractional factorial and response surface designs.

G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Experimenters: An Introduc-
tion to Design, Data Analysis, and Model Building, John Wiley & Sons, Inc., New York,
1978 2nd ed. scheduled for 2003). This book, by three eminent practitioners, has be-
come one of the most popular works on the subject. It ‘‘is an introduction to the philo-
sophy of experimentation and the part that statistics plays in experimentation’’. It
provides a practically motivated introduction to basic concepts and methods of experi-
mental design. It ‘‘is written for those who collect data and try to make sense of it’’, and
gives an ‘‘introduction to those ideas and techniques’’ that the authors have found espe-
cially useful. Statistical theory is introduced as it becomes necessary. Readers are as-
sumed to have no previous knowledge of the subject; ‘‘the mathematics needed is
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elementary’’. The book includes numerous examples and case studies and provides ap-
preciable detail about many elementary and a few more advanced designs. It is, how-
ever, an introductory treatment; therefore, more advanced situations are not discussed.
Heavy emphasis is placed on the use of graphical methods for analyzing experimental
results. In contrast, the more computationally involved analysis-of-variance tools re-
ceive relatively little attention. The four parts of the book deal with (1) comparing
two treatments, (2) comparing more than two treatments, (3) measuring the effects
of variables, and (4) building models and using them. Published in 1978, the first edi-
tion of this book does not include subsequent developments.

D. R. Cox, Planning of Experiments, John Wiley & Sons, Inc., New York, 1958. (Reprinted
in Wiley Classic Series, 1994.) This book provides a simple survey of the principles of
experimental design and of some of the most useful experimental schemes. It tries ‘‘as
far as possible, to avoid statistical and mathematical technicalities and to concentrate
on a treatment that will be intuitively acceptable to the experimental worker, for whom
the book is primarily intended’’. As a result, the book emphasizes basic concepts rather
than calculations or technical details. Chapters are devoted to such topics as ‘Some key
assumptions’’, ‘‘Randomization’’, and ‘‘Choice of units, treatments, and observations’’.
This book has become a classic (as reflected by its republication). Published in 1958,
it does not include subsequent developments.

C. Daniel, Applications of Statistics to Industrial Experimentation, John Wiley & Sons,
Inc., New York, 1976. This book is based on the personal experiences and insights of
the author, an eminent practitioner of industrial applications of experimental design.
It provides extensive discussions and concepts, especially in the areas of factorial and
fractional factorial designs. ‘‘The book should be of use to experimenters who have some
knowledge of elementary statistics and to statisticians who want simple explanations,
detailed examples, and a documentation of the variety of outcomes that may be encoun-
tered.’’ Some of the unusual features are chapters on ‘‘Sequences of fractional repli-
cates’’ and ‘‘Trend-robust plans’’, and sections entitled, ‘‘What is the answer? (what is
the question?)’’, and ‘‘Conclusions and apologies’’. Published in 1976, this book does not
include subsequent developments.

O. L. Davies and co-workers, The Design and Analysis of Industrial Experiments, 2nd ed.,
Hafner, New York, 1967; reprinted by Longman, New York, 1978 (out of print). This
book, which is a sequel to the authors’ basic text Statistical Methods in Research
and Production, is directed at industrial situations and chemical applications. Three
chapters are devoted to factorial experiments and one chapter to fractional factorial
plans. A lengthy chapter (84 pp.) discusses the determination of optimum conditions
and response surface designs, which are associated with the name of George Box,
one of the seven co-authors. Theoretical material is presented in chapter appendices.
This book was one of the earliest to reflect chemical and industrial applications. Pub-
lished in 1978, it does not include subsequent developments.

R. J. Del Vecchio, Understanding Design of Experiments, Hanser/Gardner Publications,
Inc., Cincinnati, Ohio, 1997. This short, introductory paper-back volume, sponsored
by the Society of Plastics Engineers, claims to be ‘‘presented in . . . a simplified and non-
conforming format and at a level where it can . . . provide a jumping-off place for those
who may wish to move on to the many weightier publications available . . . . The goals
are to explain the basics underlying designed experiments, supply instructions on how
to use several families of convenient designs . . . and provide some overviews on as-
sorted subtopics . . .’’. The 23 short chapters move from such introductory topics as
‘‘What are Designed Experiments?’’ and ‘‘How Hard are Designed Experiments to
Use?’’ to more advanced topics such as ‘‘Basics of Mixture Designs’’, ‘‘Taguchi’s Contri-
butions’’, and ‘‘Computer Programs for Design of Experiments’’. Thus, it surveys a
broad area, but covers each topic only at an introductory level. For example, the
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discussion of fractional factorial plans is limited to the most popular two- and three-
level designs. Only limited references are provided.

W. J. Diamond, Practical Experimental Designs for Engineers and Scientists, 3rd ed., Van
Nostrand Reinhold, New York, 2001 (1st ed., 1981). ‘‘This book is for engineers and
scientists with little or no statistical background who want to learn to design efficient
experiments and to analyze data correctly . . . . The emphasis is on practical methods,
rather than on statistical theory’’. The discussion is quite detailed in some areas, eg,
fractional factorial designs based on Hadamard matrices, and scanty in others. Some
unusual features are chapters on ‘‘Random Strategy Experimentation’’ and ‘‘Project
Engineer’s Game’’. The third edition does not seem to be a significant update from
the second edition, published in 1989. Thus, there is little discussion of modern compu-
ter software and there appear to be no references later than 1988.

C. R. Hicks and K. V. Turner, Jr., Fundamental Concepts in the Design of Experiments,
5th ed., Oxford, New York, 1999. (1st ed., 1963) ‘‘The primary purpose of this book to
present the fundamental concepts in the design of experiments using simple numerical
problems, many from actual research work . . .. The book is written for anyone engaged
in experimental work who has a good background in statistical inference. It will be
most profitable reading to those with a background in statistical methods including
analysis of variance’’. This work provides an intermediate coverage of most basic ex-
perimental designs. Recent editions ‘‘provide more emphasis on the use of computer
outputs as part of the analysis’’. However, the authors continue to emphasize formulas
for hand calculation.

R. O. Kuehl, Design of Experiments: Statistical Principles of Research Design and Analy-
sis, 2nd ed., Pacific Grove, Calif, 2000 (1st ed. 1994). The objective of ‘‘this text is
to present the principles of statistical design and analysis for comparative scientific
studies to graduate students in the experimental sciences and applied statistics’’. As
such, it is a reasonably complete, intermediate level, text directed mainly at graduate
students in statistics. The 17 chapters include four on block designs, and ones on ex-
periments to study variances, split-plot designs, repeated measures designs, and cross-
over designs, as well as the more standard chapters on factorial, fractional factorial,
and response surface designs.

C. Lipson and N. J. Sheth, Statistical Design and Analysis of Engineering Experiments,
McGraw-Hill, New York, 1972 (out of print). ‘‘This book is written in a relatively simple
style so that a reader with a moderate knowledge of mathematics may follow the
subject matter. No prior knowledge of statistics is necessary’’. Appreciably more discus-
sion is devoted to statistical analysis than to the planning of experiments. Some rela-
tively nonstandard subjects for an introductory text, such as accelerated experiments,
fatigue experiments, and renewal analysis are also included. Published in 1972, this
book does not include subsequent developments.

R. H. Lochner and J. E. Matar, Designing for Quality: An Introduction to the Best of
Taguchi and Western Methods of Statistical Experimental Design, Quality Resources,
White Plains, N.Y., and ASQ Quality Press, Milwaukee, Wis., 1990. ‘‘The purpose of
this book is to show engineers with little or no previous exposure to experimental de-
sign how to use statistically designed experiments to improve products and processes.
A prerequisite . . . is an appreciation for the concept of random variation, as is gained
through a typical statistics course or by using Statistical Process Control (SPC) in a
manufacturing environment’’. As its subtitle suggests, this book merges a discussion
of concepts introduced or popularized by G. Taguchi, with those of classical experimen-
tal design.

R. L. Mason, R. F. Gunst, and J. L. Hess, Statistical Design and Analysis of Experiments
with Applications to Engineering and Science, John Wiley & Sons, Inc., New York,
1989. ‘‘The intended audience of this book consists of two groups. The first group covers
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a broad spectrum of practicing engineers and scientists, including those in supervisory
positions . . .. This audience includes those who have little formal training in statistics
. . .. The second group . . . is students in introductory statistics courses . . . in which sta-
tistical experimental design and the analysis of data are the main topics . . . . College
algebra is the only prerequisite.’’ This book, in addition to discussing the design of ex-
periments, provides a comprehensive introduction to modern statistical methods. Fol-
lowing two introductory chapters, the four parts of this book deal with describing
variability, experimental design, analysis of designed experiments, and fitting data.

W. Mendenhall, Introduction to Linear Models and the Design and Analysis of Experi-
ments, Duxbury Press, Belmont, Calif., 1968 (out of print). This book provides an intro-
duction to basic concepts and the most popular experimental designs without going into
extensive detail. In contrast to most other books, the emphasis in the development of
many of the underlying models and analysis methods is on a regression, rather than an
analysis-of-variance, viewpoint. Published in 1968, this book does not include subse-
quent developments.

R. D. Moen, T. W. Nolan, and L. P. Provost, Improving Quality through Planned Experi-
mentation, McGraw-Hill, New York, 1991. ‘‘This book is about planned experimenta-
tion to improve quality.’’ It aims to promote ‘‘a substantial increase in the number of
people who will use these methods’’ by requiring ‘‘a lower level of mathematical and
statistical sophistication than was previously necessary . . . . Taguchi’s contributions
to the application of experimentation to the design of products and processes have
been integrated . . . (and) the book is written to be compatible with W. E. Deming’s view-
point of analytic studies’’. Graphical, rather than formal statistical, methods for data
analysis are presented.

D. C. Montgomery, Design and Analysis of Experiments, 5th ed., John Wiley & Sons, Inc.,
New York, 2001. (1st ed., 1976) This ‘‘introductory textbook dealing with the design and
analysis of experiments . . . is intended for readers who have completed a first course in
statistical methods’’. It provides a detailed treatment of standard experimental plans
and techniques for analyzing the resulting data, and has become one of the most pop-
ular books on the subject. Five chapters are devoted to factorial and fractional factorial
designs, and added chapters deal with experiments with random factors and nested
and split-plot designs. The revised editions include an introduction to mixture experi-
ments and the Taguchi approach, and give greater emphasis to computer analyses.

R. H. Myers and D. C. Montgomery, Response Surface Methodology: Process and Product
Optimization Using Designed Experiments, 2nd ed., John Wiley & Sons, 2002 (1st ed.,
1995). This book deals principally ‘‘with the exploration and optimization of response
surfaces’’—an important applications area for design of experiments. However, it also
provides some of the fundamentals of experimental design. The book has been used ‘‘in
a graduate-level course on Response Surface Methodology for statisticians, engineers,
and chemical/physical scientists’’, as well as in ‘‘industrial short courses and seminars
for individuals with a wide variety of technical backgrounds’’. Six of fourteen
chapters are devoted to response surface designs and methodology, but there are
also chapters on two level factorial and on two-level fractional factorial designs. The
book also contains two chapters on mixture experiments and introductory chapters
on robust parameter design and on continuous online process improvement with
evolutionary operation (EVOP).

G. K. Robinson, Practical Strategies for Experimentation, John Wiley & Sons, 2000. This
book claims to have ‘‘a wider scope but less mathematical depth. It gives anecdotes and
checklists of suggestions about experimenting . . . . It presents an approach to experi-
mentation on a strategic level. It describes broadly how to proceed and what questions
to think about . . . . ’’ For example, the nine chapters include ones on ‘‘Clarify the Objec-
tive’’, ‘‘Decide on a Strategy’’, and ‘‘Revisit the Objective’’. Although the book is written
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on a relatively elementary level, it is assumed that readers are familiar with the stan-
dard experimental designs discussed in most other texts on the subject. Instead, the
book leverages the author’s experiences and insights dealing with the practical and
strategic aspects of experimentation. Thus, one example begins with ‘‘This is an exam-
ple of how an experimental programme can fail badly due to inadequate consultation’’.

S. R. Schmidt and R. G. Launsby, Understanding Industrial Designed Experiments, 4th.
ed., Air Academy Press, Colorado Springs, Co. 2000 (1st ed., 1988). ‘‘This text is written
for managers, engineers, scientists and technicians. It is intended to bridge the gap be-
tween texts that are too mathematical and those that attain simplicity by omitting im-
portant concepts.’’ It is made up of seven relatively lengthy chapters on foundations
(stressing basic concepts and steps); conducting simple experimental designs and ana-
lysis; design types; statistical techniques; analysis of experimental data; Taguchi phi-
losophy, design and analysis; and optimization and advanced response surface
methods. These are followed by a 280 page chapter that presents 31 unaltered case stu-
dies and example topics, submitted by different individuals. The prime emphasis of this
book is on industrial and quality improvement applications. The text includes a disk for
the student version of the DOE KISS (Keep It Simple Statistically) software.

C. F. J. Wu and M. Hamada, Experiments: Planning, Analysis, Parameter Design Optimi-
zation, John Wiley & Sons, New York, 2000. This book, written by two authorities in
the field, is directed at the serious student who wishes complete and up-to-date knowl-
edge. Thus, it provides a detailed exposition of a large variety of experimental designs,
as well as some of the ‘‘newest discoveries’’. Even though the ‘‘intended readership . . .
includes general practitioners as well as specialists,’’ this book will likely be used most
extensively in graduate courses in experimental design for statisticians. It will also
serve as a useful reference. Fractional factorial designs, beyond two-level designs are
discussed in detail. Fore example, there is a chapter on complex aliasing. The 13 chap-
ters also include two on (Taguchi) robust parameter designs and ones on experiments
for improving reliability and experiments with nonnormal data. Each chapter con-
cludes with a useful ‘‘Practical Summary’’. As noted in a recent review in Techno-
metrics, two downsides of the book are its lack of coverage of mixture designs (in
light of its extensive coverage of other current important topics) and its limited discus-
sion of statistical software packages for the design and analysis of experiments.
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