
ENZYME INHIBITORS

1. Introduction

The inhibition of enzyme activity is one of the major regulatory devices of living
cells and one of the most important diagnostic procedures of an enzymologist. It
provides not only valuable information on fundamental aspects of enzymatic cat-
alysis and metabolic pathways, but also on the implications for pharmacology
and toxicology. An indepth study of enzyme inhibition supplies information
about the specificity of an enzyme, the physical and chemical architecture of
the active site, and the total description of the enzyme–substrate (ES) and
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enzyme–product (EP) complexes (1). Any substance that reduces the velocity of
an enzyme-catalysed reaction can be considered to be an ‘‘inhibitor’’. In everyday
life, enzyme inhibitors masquerade as drugs, antibiotics, preservatives, poisons,
and toxins.

Reversible enzyme inhibition (noncovalent binding) is divided into two
types: complete (linear), in which the plots of reciprocal velocity versus inhibitor
concentrations give a straight line, and partial (hyperbolic) in which this plot is a
hyperbola. With complete enzyme inhibition, the velocity tends to zero when the
concentration of the inhibitor increases; with partial inhibition, the enzyme is
converted into a modified, but still functional, enzyme–substrate–inhibitor
(ESI) complex (Fig. 1) (b¼degree of partiality; Ki, Ki0, Km, and Km0 are defined
as respective dissociation constants) (2). The analysis of the enzymatic kinetic
data consists of several steps, in which the result of a precedent step determines
a subsequent one: data reduction, analogue data plot inspection, kinetic model
construction, derivation of kinetic equations, and the regression analysis for
the determination of all relevant kinetic parameters.

There are three types of inhibition: competitive, noncompetitive, and
uncompetitive. The first deals with a substance that combines with free enzyme
in a manner that prevents substrate binding (Ki0 ¼1) (Fig. 1); the second has no
effect on substrate binding as the substrate and inhibitor bind reversibly,
randomly and independently at different sites. In this case, since Ki¼Ki0, the
Haldane relationship requires that Km¼Km0; the third is illustrated by a
compound that binds to the enzyme–substrate complex to yield an inactive
ESI complex (Ki¼1).

2. Inhibitor Parameters

Graphical interpretations of the types of inhibition are needed to calculate the
necessary parameters. Some graphic methods, including those of Lineweaver-
Burk (3), Dixon (4), and Cornish-Bowden (5) are used for kinetic analysis of

Fig. 1. Reversible enzyme inhibition.
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complete or linear inhibitor action; these plots are not valid for partial inhibition.
If precise estimates of the data are required, it is important to take into account
relative variability in the data points, and to use objective and unbiased proce-
dures (6,7). Only a few analytical methods for the investigation of the action of
partial inhibitors have been published (1,8,9). Despite its limitations in assuming
that the enzyme is unireactant, the plot of fractional velocity [v/(Vo-v)] versus
reciprocal of inhibitor concentration [1/I], where Vo and v are the rates of enzyme
reaction attained by the system in the presence of a fixed amount of substrate,

Fig. 2. Fractional velocity plots showing partial competitive inhibition of glutamine
synthetase by alanine at different levels of glutamate [2.0 mM (þ ), 2.5 mM (~), 3.33 mM
(3) and 5 mM (x)].

Fig. 3. Fractional velocity plot showing partial noncompetitive inhibition of hexokinase
by adenosine diphosphate (ADP).
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and in the absence and presence of inhibitor, respectively, offers a unique solu-
tion for measuring kinetic parameters in both linear and hyperbolic inhibition
(1). Partial inhibition affords straight lines that converge on the 1/I axis, at a
point away from the origin (Figs. 2–4); complete inhibition gives straight lines
that pass through the origin (Figs. 5–7); For competitive inhibition, the slopes
of the lines increase with increasing substrate concentration (Figs. 2 and 5);

Fig. 4. Fractional velocity plots showing partial uncompetitive inhibition of mevalonate
diphosphate decarboxylase by b-methylene adenosine 50-triphosphate at different levels of
3-phospho-5-pyrophosphomevalonate (PPPM) [2.0 mM (þ ), 2.5 mM (~), 3.33 mM (3) and
5 mM (x)].

Fig. 5. Fractional velocity plots showing complete competitive inhibition of the sulfatase
enzyme by galactose-6-sulfate at different levels of p-nitrocatechol sulfate [1.0 mM (þ ),
1.5 mM (~), 2.0 mM (3) and 5 mM (x)].
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with noncompetitive inhibition, the slopes are independent of substrate concen-
tration (Figs. 3 and 6); with uncompetitive inhibition, the slopes of the lines
decrease with increasing substrate concentration (Figs. 4 and 7). The kinetic
parameters, Km, Ki, Ki0, and B (degree of partiality) can best be determined
from respective secondary plots of slope and intercept versus substrate concen-
tration, for competitive and noncompetitive inhibition (Figs. 8–10) or slope and
intercept versus reciprocal substrate concentration for uncompetitive inhibition.
(Figs. 11–13).

Fig. 6. Fractional velocity plot showing complete noncompetitive inhibition of liver alco-
hol dehydrogenase by adenosine monophosphate (AMP).

Fig. 7. Fractional velocity plots showing complete uncompetitive inhibition of the amino
peptide enzyme by bestatatin at different levels of L-leucine p-nitro anilide [2.0 mM (þ ),
2.5 mM (~), 3.33 mM (3) and 5 mM (x)].
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Irreversible enzyme inhibition (covalent binding) creates a covalent bond
between the inhibitor and the enzyme and may be divided into two phases:
The inhibitors first bind to the enzyme in a noncovalent fashion and then
undergo subsequent covalent bond formation. There are two fundamental
classes: Suicide inhibition (10) (Fig. 14) and mechanism-based inhibitors.
(Fig. 15) (11).

When selective irreversible inhibitors are used to label active site residues
of an enzyme to aid in their identification, they are called affinity labels. A sui-
cide inhibitor, on the other hand, is an affinity label that is unreactive until it is
acted upon by the enzyme, at which point it binds irreversibly. The fundamental

Fig. 8. A secondary plot of the slopes obtained from the lines from Figure 2 versus glu-
tamate concentration.

Fig. 9. A secondary plot of the intercepts on the y axis of Figure 2 versus glutamate
concentration.

322 ENZYME INHIBITORS Vol. 10



action of a mechanism-based inhibitor depends on the enzymes catalytic mechan-
ism as the inhibitor, which is a substrate analogue, irreversibly modifies the
enzyme at a particular step in the catalytic cycle (12). A knowledge of the cata-
lytic mechanism of the enzyme with its normal substrate, and the introduction of
an appropriate latent functional group into the substrate is important as a fairly
unreactive species is converted into a highly reactive one only during the specific
catalytic step. Furthermore the inhibitor must fulfil the binding specificity
requirements for the ligand recognition site.

Fig. 10. A secondary plot of the slopes obtained from the lines from Figure 5 versus
p-nitrocatechol sulfate concentration.

Fig. 11. A secondary plot of the slopes obtained from the lines from Figure 4 versus the
reciprocal of 3-phospho-5-pyrophosphomevalonate (PPPM) concentration.
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3. Inhibitor Design

3.1. De Novo. The rational design of enzyme inhibitors is still being pur-
sued as the most viable and fundamental for the design of drugs. First, the de
novo design of inhibitors requires the three-dimensional (3D) structure of the
target enzyme or of a model constructed from related enzymes; or the biological
activities and structures of related inhibitors for the particular enzyme; or the
pharmacore, which consists of the chemical groups of a ligand and their relative

Fig. 12. A secondary plot of the intercept on the y axis of Figure 4 versus reciprocal of
PPPM concentration.

Fig. 13. A secondary plot of the slopes obtained from the lines from Figure 7 versus the
reciprocal of L-leucine p-nitro anilide concentration.
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orientations that are important for binding. Second, a compound is then designed
that will bind to a molecular site on the enzyme in such a way that it will alter its
behavior. Third, this compound is chemically synthesised and tested. A struc-
ture–activity relationship is needed to determine the properties of a molecule
based on its structure and this will be followed by building a structure that is
based on the desired properties (13).
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3.2. Computer Assisted. Computer-assisted inhibitor design repre-
sents more recent applications of computers as tools in the inhibitor design pro-
cess. In most current applications, attempts are made to find an inhibitor (drug)
that will interact favorably with an enzyme that represents the target site. Bind-
ing of the inhibitor to the enzyme may include hydrophobic, electrostatic, hydro-
gen-bonding interactions, and solvation energies that optimizes the fit of an
inhibitor to an enzyme. Many computer aided inhibitor design systems choose
to predict the properties of either the inhibitors (inhibitor based) that operate
on the enzyme or the enzyme itself (enzyme based), but not usually both.

The former approach is applicable when the structure of the enzyme site is
unknown, but when a series of compounds have been identified that exert the
activity of interest. To be used most effectively, one should have structurally
similar compounds with high activity, with no activity, and with a range of inter-
mediate activities. In recognition site mapping, an attempt is made to identify a
pharmacophore, which is a template derived from the structures of these com-
pounds and is represented as a collection of functional groups in 3D space that
is complementary to the geometry of the enzyme.

In applying this approach, conformational analysis will be required, the
extent of which will be dependent on the flexibility of the compounds under
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investigation. One strategy is to find the lowest energy conformers of the most
rigid compounds and superimpose them. Conformational searching on the
more flexible compounds is then done while applying distance constraints
derived from the structures of the more rigid compounds. Ultimately, all of the
structures are superimposed to generate the pharmacophore that is then used as
a template to develop new compounds with functional groups in the desired posi-
tions. In applying this strategy, one must recognize that one is assuming that it
is the minimum energy conformers that will bind most favorably in the receptor
site though there is no a priori reason to exclude higher energy conformers as the
source of activity.

The second half of the challenge in developing a new inhibitor molecule is to
take the important properties and determine the structure that will have them.
Computational and rule-based equations suffer from drawbacks due to combina-
torial complexity of the search space, design knowledge acquisition difficulties,
nonlinear structure–property correlations, and problems incorporating higher
level biological knowledge.

The enzyme-based approach applies when a reliable model of the enzyme is
available, as from X-ray diffraction, nuclear magnetic resonance (nmr), or homol-
ogy modeling. With the availability of the enzyme, the problem is to design inhi-
bitors that will interact favorably at the site. Enzyme-based inhibitor design
incorporates a number of molecular modeling techniques and though it is not
the intention of this review to present an exhaustive account of all of the com-
mercial packages available it is pertinent to tabulate and mention a few.

Structure–Activity Relationship. Table 1 shows structure-activity rela-
tionships.

Table 1. Structure-Activity Relationships

QSAR with
CoMFA (15)

QSAR with CoMFA provides tools to build statistical and graphical
models of biological activity from molecular structures, and uses
these models to make predictions for the activity of untested
compounds.

Advanced
CoMFA (15)

Advanced CoMFA offers specialized CoMFA fields and clustering
tools that assist in refinement of predictive models.

ClogP/CMR (15) ClogP uses a fragment-based approach to calculate octanol–water
partition coefficients of compounds for use as descriptors in QSAR
studies. CMR uses an atom-based approach to calculate molar
refractivity.

Distill (15) Distill classifies compounds according to their common substructures
and organizes the results in a display that enables visualization of
structure–activity relationships.

HQSAR (15) HQSARusesmolecular fragment informationandstatisticalmethods
to automatically generate structure–activity relationshipswithout
requiring alignment of ligands.

Molconn-Z (15) Molconn-Z computes a wide range of topological indices based on
molecular structure.

TSAR (16) TSAR finds trends in data using statistical and visual analysis tools.
CoMSIA CoMSIA uses Gaussian function to assess steric, electrostatic,

hydrophobic, and hydrogen-bond donor–acceptor fields.
EDDFA EDDFAuses steric, electrostatic, electronic, kinetic energy densities,

fukui function, laplacian, local average ionization potential and
binary node potential fields to build molecular structures.
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QSAR. A detailed introduction to the physical parameters, mechanisms,
methodology, applications, and properties of QSAR is presented elsewhere (14).

Enzyme-inhibitor design is an iterative process that begins with a com-
pound that displays an interesting biological profile and ends with optimizing
its activity profile. The process is initiated when a hypothesis is established
that relates the chemical features of the molecule (or if a series of process(es)
is responsible for activity, the hypothesis generally is refined by examining struc-
tural molecules) to the biological activity without a detailed understanding of the
biochemical similarities and differences for active and inactive molecules. Rules
can be used for a series of compounds to evaluate new chemical entities (eq. 1).

Biological activity ¼ constþ C1 P1þ ðC2 P2Þ þ ðC3 P3Þ þ � � � ð1Þ

where the parameters P1 through Pn are computed for each molecule in the ser-
ies and the coefficients C1 through Cn are calculated by fitting variations to the
parameters and the biological activity. The factors that influence and predict are
(a) binding data measured with sufficient precision to distinguish between com-
pounds; (b) a set of parameters that can be easily obtained and that are likely to
be related to enzyme affinity; (c) a method for detecting a relationship between
the parameters and binding data (the QSAR), and (d) a method for validating the
QSAR. There must be information about the size and shape of the interface and
physical properties in the active site of the enzyme–inhibitor complex in order to
understand how enzymes recognise small inhibitor molecules (17).

Enzyme inhibitors may exert their biological effects by participating in a
series of events that include transport to the enzyme’s active region, binding
with the enzyme, and subsequent metabolism to an inactive species. Since the
interaction mechanisms between the inhibitor and the putative enzyme are
unknown in most cases inferences are made, to explain these interactions,
from molecular properties and descriptors for known molecules. Once the rela-
tionship is defined, it can be used to aid in the prediction of new or unknown
molecules. After biological data has been collected, it must be expressed in
terms of free energy changes that occur during the biological response. The
free-energy terms E (energy), G (free energy), H (enthalpy), and S (entropy),
are represented by a series of parameters that could be derived for a given mole-
cule. When examining the potency of an inhibitor (the dosage required to produce
a biological effect), the change in standard free energy is proportional to the
inverse logarithm of the concentration of the compound (C) (eq. 2).

log 1=½C	 ¼ �2:3 RT log K ¼ G0 ð2Þ

Since the purpose of a QSAR is to highlight relationships between activity and
structural features, it is necessary to find one or more structural features that
relate these molecules to their associated activity. Additionally, it would be
necessary to find a parameter that works consistently for all molecules.

There are several potential classes of parameters used in QSAR studies.
Electronic effects such as electron-donating and electron-withdrawing tenden-
cies, partial atomic charges and electrostatic field densities are defined by
Hammett sigma values, resonance parameters (R values), inductive parameters
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(F values), and Taft substituent values (*, Es). Steric effects such as molecular
volume and surface area are represented by values calculated for molar
refractivity and the Taft steric parameter. Enthalpic effects are calculated
using partition coefficients (log P) or the hydrophobic parameter, which is
derived from this partition coefficient. In addition, an assortment of structural
indices are used to describe the presence of specific functional groups at positions
within the molecule. The linear equation that describes the relationship between
activity and this parameter set is the Hansch equation (eq. 3)

log 1=½C	 ¼ Aðlog PÞ � Bðlog PÞ2 þ CðEsÞ þDð
Þ þ ðEÞ þ � � � ð3Þ

Multiple linear regression analysis is used to derive the values of the coefficients.
In general, Hansch-type studies are performed on compounds that contain a com-
mon template (usually a rigid one such as an aromatic ring) with structural var-
iation limited to functional group changes at specific sites. While there are limits
to the Hansch approach, it permits complex biological systems to be modeled suc-
cessfully using simple parameters. The main problem with the approach was the
large number of compounds that are required to adequately explore all structural
combinations. Further, the analysis methods did not consider conformational
effects (18). If the association between the parameter(s) selected and activity is
strong, then activity predictions will be possible as it is assumed that parameters
can be calculated more accurately than activity can be measured. The relation-
ship between biological activity and specific functional groups at specific loca-
tions on parent molecules can be ascertained (19) (eq. 4).

Activity ¼ A þ ij GijXij ð4Þ

where A is defined as the average biological activity for the series, Gij is the con-
tribution to activity of a functional group i in the jth position, and Xij is the pre-
sence (i¼ 1, j¼ 0) or absence (i¼ 0, j¼ 0) of the functional group i in the jth
position. The procedure uses equation 4 to build a matrix for a series of inhibitor
molecules and represents this matrix as a series of equations. Substituent con-
stants then were derived for every functional group at every position and statis-
tical tests used to test the importance of these constants. If the models were
shown to be valid, the model was used to predict activity values for compounds
that had not been prepared. In general, while a large number of compounds are
required to explore the effects of multiple substitution patterns, the Free-Wilson
approach substantially reduces the number of analogues required. The method,
however, demands that the effects of substituents are additive.

CoMFA. This analysis utilizes partial least squares (PLS) and cross-
validation, to develop inhibitor models for activity predictions. The approach
used in the CoMFA procedure requires that alignment rules for the series of
inhibitor molecules are defined that overlap the putative pharmacophore for
each molecule. Once aligned, each molecule is fixed into a 3D grid and the
electrostatic (estat) and steric (ster) components of the molecular mechanics
force field, arising from interaction with a probe atom, are calculated at inter-
secting lattice points within this grid.
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PLS essentially relies closely on the fact that the correlations among parts
of a molecule are similar so that the real dimensionality is smaller than the num-
ber of grid points. Since these coefficients are position dependant, substituent
patterns for the series are elucidated that define regions of steric bulk and elec-
trostatic charge associated with increased or decreased activity. The number of
components needed for the best model and the validity as a predictive tool are
assessed using cross-validation (20–23) (Fig. 16).

QSAR with CoMFA (15,24). This provides tools to build statistical and
graphical models of activity from molecular structure, and uses these models to
make accurate predictions for the activity of untested compounds. It organizes
structures and their associated data into molecular spreadsheets, calculates
molecular descriptors, structural, conformational, geometric, electronic, thermo-
dynamic, hydrophobic, molar refractivity, highest occupied molecular orbital
(HOMO) or lowest unoccupied molecular orbital (LUMO) values and specialised
2D fingerprints (HQSAR) and performs sophisticated statistical analyses that
reveal patterns in structure–activity data (25). LeapFrog (26) uses a CoMFA
model as the basis for de novo ligand design, and can optimize lead compounds
or generate novel structures.

CoMSIA (ComparativeMolecular Shape Indexes Analysis) (27). This
method is similar to CoMFA, but uses a Gaussian function rather than Coulom-
bic and Lennard-Jones potentials to assess steric, electrostatic, hydrophobic, and
hydrogen-bond donor–acceptor fields. If the correct conformation of a molecule is
not known, multiple conformers can be stored in the molecular spreadsheet to
allow alternative conformers to be considered in a CoMFA or CoMSIA analysis.
Statistical tools in QSAR with CoMFA include principal component analysis
(PCA) (28) for uncovering relationships between descriptors, PLS (29) regression
for analyzing continuous response data (IC50, etc), and soft independent model-
ing of class analogy (SIMCA) (30) for analyzing data that is categorical rather

Fig. 16. Colchicine inhibitor in the CoMFA steric and electrostatic fields. Steric map in-
dicating areas where bulk is predicted to increase (green) or decrease ( yellow) activity.
Eletrostatic map indicating where high electron density (negative charge) (red) and low
electron density (positive charge) (blue) regions are expected to increase activity.
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than continuous (ie, active vs. inactive). The results of CoMFA or CoMSIA ana-
lyses are displayed as color-coded contours around molecules, allowing visual
identification of regions responsible for favorable or unfavorable interactions
with the receptor (Fig. 17).

HQSAR (31). This method does not require exact 3D information for the
inhibitors but is reflected by a molecular fingerprint that encodes the frequency
of occurrence of various molecular fragment types. The fragment size controls
both the minimum and maximum length of the fragments to be included in
the fingerprint. Molecular holograms are produced by generating all the linear
and branched fragments such as atoms, bonds, number of hydrogen atoms,
and chirality parameters. HQSAR identifies the patterns of substructural frag-
ments related to activity in sets of bioactive molecules by identifying color coded
molecular fragments that have positive or negative impact on activity.

EDDFA. This method is an improved CoMFA that utilizes eight molecu-
lar property fields instead of two. EDDFA uses steric, electrostatic, electronic,
kinetic energy densities, fukui function, laplacian, local average ionization
potential, and binary node potential fields. Each property field is rapidly gener-
ated using properties of the transferable atom equivalent (TAE) electron density
distribution. Since inhibitor molecules would interact with enzymes via noncova-
lent interactions involving electron densities, descriptors using this principle
would show high correlation to biological activity. A fine-grained version of the
cross-validated guided region section (R2-GRS) routine of Cho and Tropsha (32)
is used to identify important regions of space surrounding each molecule in the
dataset. Field values in the selected regions are used as descriptors in a PLS
regression analysis.

Pharmacophore Perception. Table 2 presents pharmacophore perception
data.

Apex-3D (16). A detailed description of the fundamental architecture for
this computer assisted molecular modeling package has appeared (33). It is
an automated pharmacophore identification system that can identify possible
pharmacophores from a set of biologically active molecules using statistical

Fig. 17. A CoMSIA analysis of thrombin inhibitors. On the left, an inhibitor is positioned
in the site based on X-ray coordinates. On the right, CoMSIA contours show regions pre-
dicted to prefer steric bulk (green) and other regions (yellow) where steric interactions are
unfavorable. The sterically favorable contour lies within the pocket, while the sterically
unfavorable contours intersect the surface, confirming the CoMSIA analysis.
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techniques and 3D pattern matching algorithms. The program classifies mole-
cular structures using three methods:

1. The agreement inductive method identifies common structural patterns in
compounds having similar activity.

2. The difference inductive method identifies structural patterns to differenti-
ate active and inactive compounds.

3. The concomitant variations inductive method highlights variations in
structural features that explain changes in biological activity for sets of
compounds.

Pharmacophores are defined by different chemical centers (atom-centered func-
tional groups) and the distances between these centers and they include aro-
matic ring centers, electron donor ability hydrogen-bonding sites, lipophilic
regions, and partial atomic charge. The information for each molecule is stored
in a knowledge base in the form of rules that can be used to predict the activity of
novel structures. Depending on the type of biological activity available, it is pos-
sible to identify pharmacophores for different binding orientations, enzymes, or
agonist versus antagonist activity by building a knowledge base using the follow-
ing steps:

1. Identify all possible binding interaction centers for each compound in the
data set.

2. Generate topological (2D) or topographical (3D) distance matrices based on
the set of descriptors.

3. Identify possible pharmacophores from all pairs of molecules using clique
selection algorithms.

4. Classify these pharmacophores based upon their occurrence in compounds
in each activity class using Bayesian statistics and their nonchance
occurrence.

Table 2. Pharmacophore Perception

DISCO (30) DISCO performs pharmacophore elucidation from precomputed
conformations of active compounds that bind to the same target.

GASP (24) GASP elucidates pharmacophore models while allowing ligand
flexibility and without requiring prior knowledge of pharmaco-
phore elements or constraints.

RECEPTOR (24) RECEPTOR uses systematic search to determine the common, 3D
bound geometry of pharmacophore elements in a set of receptor
ligands.

HIPHOP (16) HIPHOP matches the chemical features of a molecule against
inhibitor candidate molecules in a 3D database.

CATALYST (33) CATALYST develops 3D pharmacophore models or hypotheses from
a collection of molecules possessing a range of diversities in
structure and activities.

Apex 3D (16) APEX 3D can identify possible pharmacophores from a set of
biologically active molecules using statistical techniques and 3D
pattern matching algorithms.
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5. Set thresholds for probability and reliability statistics associated with a
pharmacophore so that all training set molecules are properly classified
by the pharmacophore rules.

6. Align compounds containing high probability pharmacophores on the origi-
nal pharmacophore.

Pharmacophores and enzyme active site models play a very important role in
inhibitor design yet before they can be built, however, the lead molecules must
be aligned so that the active functional groups of the molecules are overlapping
in space. One reason why this particular step could be considered as being diffi-
cult is that many compounds have rotatable bonds, so that the ‘‘active’’ conformer
must be found first and then the molecule rotated to align with the other mole-
cules in the study. The main difficulty in alignment is that usually the active
functional groups in the pharmacophore are unknown, so each of the above
steps involves some guessing. Often it is necessary to build several enzyme–inhi-
bitor models based on alternate pharmacophores. The alignment procedure used
is referred to as atom–atom mapping in which similar atoms in the molecule are
determined and used as a template for the alignment. The strength of the inter-
action of a potential inhibitor molecule with the active site of an enzyme is more
likely to be sensitive to the position and type of functional groups.

Once the knowledge base has been constructed, it can predict biological
activity for inhibitors not included in the training set. The pharmacophores
defined above can be used to build 3D QSAR models by correlating indexes cal-
culated for biophore sites, secondary sites, or whole molecule properties. Three-
dimensional QSAR models in Apex are generated and screened using a modified
scheme of multiple linear regression analysis with variable selection.

HipHop (16). This method searches for types of chemical functional
groups within potential inhibitor molecules and chooses conformations and
alignments that overlap the groups in space and ignores any intervening back-
bone atoms in making these comparisons. The result is a series of hypotheses and
alignments of inhibitor molecules for possible pharmacophores that ultimately
can be used to generate an enzyme–inhibitor model. The advantage of HipHop
is that the use of chemical properties in generating alignments is often more rea-
listic in reproducing the details of the molecular recognition mechanism, as com-
pared to atom–atom matching procedures. HipHop and atom–atom matching
are complementary techniques and both would be used in suggesting pharmaco-
phores for future study.

Catalyst (34). This method generates structure–activity hypotheses
from a set of molecules of various activities. Once molecular connectivity and
activity values are specified for all molecules, catalyst creates a set of generalized
chemical functions (regions of hydrophobic surface, hydrogen bond vectors,
charge centers, or other user-defined features) at specified relative positions
(Fig. 18). Up to 10 hypotheses are produced and ranked by estimated statistical
significance then examined graphically, ‘‘fitted’’ to a new molecules, or fed
directly to a flexible 3D database search. In the first step of the process, a set
of representative conformers is found that covers the low energy conformational
space of each molecule. The second step locates a list of candidate hypotheses
that are common among active and rare among inactive compounds. The theory
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of minimum complexity estimation indicates that a predictive hypothesis will be
the least number of descriptors required as well as a minimum of errors in the
activities.

Molecular Modeling. See Table 3 for molecular modeling data.
MOLCAD (35). This method creates graphical images of an enzyme’s

active region to illustrate the properties of inhibitors that would be necessary

Fig. 18. Two 5HT3 inhibitors (green and yellow) mapped on to a six-feature hypothesis
using the Catalyst algorithm. Cyan represents a hydrogen donor; magenta a hydrogen
acceptor; brown a hydrophobic interaction; green an ionizable/charged group.

Table 3. Molecular Modeling

SYBYL/Base (24) SYBYL/Base includes comprehensive tools for molecular modeling:
structure building, optimization, and comparison; visualization of
structures and associated data and force fields.

Advanced
Computation (24)

Advanced computation provides a range of tools for conformational
analysis of torsional states of a molecule or identify just its low
energy conformations.

MOLCAD (35) MOLCAD creates and displaysmolecule surfaces ontowhich it maps
key properties, including lipophilicity, electrostatic potential,
hydrogen-bonding sites, and local curvature.

MM3(2000) (24) MM3(2000) is a molecular mechanics program that produces high
quality 3D structures and computesmolecular energy, vibrational
spectra, and a variety of thermodynamic and spectroscopic
quantities.

AMPAC (24) AMPAC calculates structures and electronic properties of molecules
using semiempirical quantum mechanical methods.

Confort (24) Confort performs conformational analyses of inhibitor-sized
molecules to identify the global minimum energy conformer, all
local minima within a user-specified energy range, or a maximally
diverse subset of conformers.
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for molecular recognition (36). van der Waals and solvent-accessible enzyme sur-
faces can be shown and a broad range of properties such as lipophilic potential
(37), electrostatic potential, hydrogen-bonding ability, local curvature, and
distance. MOLCAD reveals the underlying secondary and tertiary structure,
and maps onto these fundamental physical properties such as residue lipophili-
city, flexibility based on atomic temperature factors, and the packing density. It
can characterize the size, shape, and physical properties of intramolecular cav-
ities and channels and examines the specificity of enzyme–inhibitor interactions
(36,37) (Fig. 19).

Structure-Based Design. Table 4 gives information on structure-based
designs.

SiteID (38) The recent explosion in the ability to predict and/or solve
macromolecule structures has led to an increased interest in methods for model-
ing the interaction of inhibitors with enzymes. The first hurdle that must be sur-
mounted, however, is to locate the active site or pocket in which the inhibitor
binds. SiteID provides analysis and visualization tools leading to the identifica-
tion of potential binding sites within or at the surface of enzyme targets. First,
the enzyme active site is rapidly identified, while in the second, SiteID is used for
a detailed analysis of the enzyme structure based on properties suitably identi-
fied for binding. In this mode, SiteID automatically creates a color-mapped data-
base of solvent exposure, hydrogen-bonding character, hydrophobicity, and local
surface curvature (Fig. 20).

Modeller. Knowledge of the 3D structure of an enzyme is a prerequisite
for the rational design of site-directed mutations in the enzyme and can be of

Fig. 19. The structure of a lipid binding protein complexed with glycocholate. The pro-
tein loop regions are rendered as a tube; blue arrows illustrate beta sheets, and red cylin-
ders denote helices. The binding site [green] was located using MOLCAD’s channel finding
capability and is color coded by the lipophilic potential—cyan as negative and magenta as
positive.
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Table 4. Structure-Based Design

Biopolymer (24) Biopolymerdelivers anextensive set of tools for building, visualizing,
manipulating, and predicting the 3D structure of biological
molecules.

Composer (24) Composer builds 3D models of proteins from sequence using
knowledge-based homology modeling methods.

ProTable (24) ProTable uses SYBYL’s Molecular Spreadsheet to deliver tools that
analyze and assess the quality of enzyme structures.

SiteID (38) SiteID provides analysis and visualization tools leading to the
identification of potential binding sites within or at the surface of
macromolecules.

LeapFrog (26) LeapFrog uses aCoMFAmodel as the basis for denovo liganddesign,
and can optimize lead compounds or generate novel structures.

MODELLER
(51)

MODELLER is used for comparitive modelling of protein 3D
structures.

HOMOLOGY
(16)

HOMOLOGY builds a 3D model of an enzyme from its amino acid
sequence and the known structure of related proteins.

CONVERTER
(16)

CONVERTER builds 3D models from 2D structural databases

SWISS-MODEL
(53)

SWISS-MODEL is a fully automated comparative enzyme (protein)
structure homology modeling server.

Fig. 20. The binding pocket of dihydrofolate reductase located by SiteID and shown as a
MOLCAD surface. The red areas of the surface indicate contact atoms in the pocket, while
the yellow areas show the residues in which those atoms are contained. The inhibitor
(methotrexate) is shown in green.
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great importance for the design of inhibitors. Structural information often
greatly enhances understanding of how enzymes function and model-building
on the basis of the known three dimensional structure of a homologous protein
is at present the only reliable method to obtain structural information (39–45).
Comparisons of the tertiary structures of homologous enzymes have shown that
3D structures have been better conserved during evolution than enzyme primary
structures (46–48) and massive analysis of databases holding results of these
3D comparison methods indicate the feasibility of enzyme model-building by
homology (49,50).

Modeller is a computer package used for homology or comparative modeling
of protein 3D structures (51,52). A sequence alignment is modeled with a known
related protein structure, by considering spatial restraints, and the programme
automatically calculates and creates a model containing all non-hydrogen atoms.

Inhibitor Docking. See Table 5 for inhibitor docking information.
FlexX (54). This method is a fast algorithm for flexibly docking inhibi-

tors, using incremental construction to actually build the inhibitors within the
binding site of the enzyme. Taking advantage of the best ideas and techniques
available for structure-based inhibitor design, FlexX incorporates enzyme–inhi-
bitor interaction scores, fragmentation of the inhibitor along natural dividing
points, inhibitor core placement in the active site, and reconstruction of the com-
plete inhibitor from the fragments. FlexX includes conformational flexibility of
the inhibitor—of critical importance because the low energy conformation is
rarely the bioactive one (55–61) (Fig. 21).

Dock. More recent versions of DOCK (62) allow score parameters to be
based on force fields, which include both van der Waals and electrostatic inter-
actions (63,64). These results with DOCK illustrate the potential for programs to
search objectively for inhibitors that are complementary to enzyme active sites,

Table 5. Inhibitor Docking

FlexX (54) FlexX flexibly docks inhibitors into binding sites, allowing virtual
screening of compound databases.

CScore (24) CScore integrates multiple types of scoring functions for ranking the
affinity of inhibitors bound to an enzyme.

FlexS (24) FlexS is a program for automatic structural alignment of inhibitor
molecules that can be used for shape-based screening in the absence
of an enzyme structure, and to align molecules for 3D QSAR studies.

CombiFlexX
(24)

CombiFlex applies a combinatorial approach to inhibitor docking.

FlexXPharm
(24)

FlexX-Pharm enables pharmacophore-type constraints to be used in FlexX
to guide inhibitor docking.

Insight II (16) Insight II creates,modifies,manipulates, displays, and analysesmolecular
systems.

Binding Site
Analysis
(16)

Identifies and characterises an inhibitor binding site thenuses them tofind
similar features in other known structures

Ludi (65) Ludi is used to fit inhibitor molecules into the active site of an enzyme by
identifying andmatching complementary polar andhydrophobic groups.

Dock (62) Dock uses parameters based on force fields and includes van derWaals and
electrostatic interactions.

Affinity (66) Affinity docks inhibitors to enzymes identifying low energy orientations.
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thereby assisting researchers in identifying potential drugs that may be consid-
erably different from existing ones. Once potential inhibitors have been identi-
fied by such methods, other molecular modeling techniques like geometry
optimization may be used to ‘‘relax’’ the structures and to identify low energy
orientations of inhibitors bound to enzyme active site. Molecular dynamics
may also assist in exploring the energy landscape, and free energy simulations
can be used to compute the relative binding free energies of a series of putative
drugs. Many enzymes are membrane bound, making it extremely difficult to
determine their 3D structure by nmr or X-ray crystallography. Furthermore
complications may arise since enzymes may change shape as they bind, a process
called ‘‘induced fit’’. Existing methods for constructing predictive models are
unable to model steric interactions accurately, particularly when these interac-
tions involve large regions of the molecular surface. Likewise, QSAR techniques
are accurate only on a small scale, determining properties of specific regions but
failing to produce an accurate global description of the molecule. Pharmacophore
models attempt to combine some of the advantages of QSAR techniques with the
idea of identifying substituents and advances in 3D QSAR have led to superior
characterization of molecules and better calculation of their properties.

Fig. 21. A set of inhibitors docked on to the active site of carboxypeptidase A by FlexX.
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LUDI. This method actually fits inhibitor molecules into the active site of
an enzyme by matching complementary polar and hydrophobic groups and uses
an empirical scoring function (65). Ludi can also suggest modifications that may
increase the binding affinity between an existing inhibitor–ligand and the
enzyme (Fig. 22).

Affinity. This method automatically docks inhibitors to enzymes identify-
ing low energy orientations of the inhibitor within the active site and using force-
field-based methods to automatically find the best binding mode (Fig. 23). This
energy-driven method is especially useful in structure-based inhibitor design
where the experimentally determined structure of an enzyme–inhibitor complex
is often unavailable (66). The inhibitor binding may be accompanied by confor-
mational change like side-chain movements or displacements of whole loop
regions. Affinity allows exploration of these potential movements by defining
flexible areas in the enzyme binding pocket as well as in the inhibitor. Affinity
uses a two-step process to dock the inhibitors. First, initial placements of the
inhibitor within the enzyme active region are made using a Monte Carlo type
procedure to search both conformational and Cartesian space. Second, a simu-
lated annealing phase optimizes the location of each inhibitor placement. During
this phase, Affinity holds the ‘‘bulk’’ of the enzyme molecules (defined as atoms
not in the user-specified binding site) rigid, while the binding-site atoms and
inhibitor atoms are movable. Interactions between the bulk (nonflexible) and
movable atoms are approximated by the very accurate and efficient molecular
mechanical/grid (MM/Grid) method developed by Luty and co-workers (67),
while interactions among movable atoms are treated using a full force-field
representation. As an extension to Affinity within Insight II (68) product family
is Interactive Docking.

Texture Mapping. The complexity of enzyme–inhibitor interactions leads
to vast amounts of data generated by experiments or simulations (69). For a

Fig. 22. Prediction by LUDI. Trypsin backbone (blue ribbon and purple atoms), the
benzamidine X-ray coordinates (multicolored molecule) and a benzamidine fit by LUDI
(red molecule).
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better understanding of the structure and function of such systems, more
advanced computer graphics capabilities are desirable, allowing one to go from
a qualitative general overview toward more and more detailed aspects. With
the advent of the technique of texture mapping (70,71) a new door for the visua-
lization of enzyme–inhibitor interactions has been developed. Texture mapping
is a graphic design by which a 2D surface, or texture map, is wrapped around a
3D object. It is a technique that applies a computer-derived image of an enzymes
active region (texture space) by individual elements called texels (72,73). Two
approaches, both capable of monitoring attractive and repulsive forces within
enzyme–inhibitor complexes, are used to generate this visual information:

1. Discrete isocontour surfaces (74) that connect all points of a 3D property
grid that are equal to a selected value.

2. Color coding for surface curvature (75).

It is demonstrated that additional quantities describing local hydrophobicity,
surface roughness, surface topography, and surface flexibility are introduced
on the basis of empirical findings which are helpful quantities for understanding
molecular recognition.

A rather useful application of multiple property texture mapping and
enzyme–inhibitor construction is transparency illustrated by analyzing the
local flexibility of a structure. As ‘‘floppiness’’ or flexibility of the enzyme active
site domain increases so its transparency increases. Conversely, the more rigid

Fig. 23. Docking of benzamidine onto trypsin using Affinity. The crystallographically de-
termined position for benzamidine is shown with green carbons, the other colored struc-
tures represent four of the lowest energy docked conformations calculated by Affinity. The
green ribbons represent the protein backbone of trypsin.
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the structure the more opaque will be the active region. Such a transparency
map may well be combined with any other color-coded property, as it is of inter-
est to study the dynamic properties of a potential inhibitor molecule in many dif-
ferent contexts. By filtering property information on an enzyme active site
molecular surface, one is able to distinguish between important and irrelevant
information and to convert a qualitative property into a quantitative context in
order to identify the binding site of an inhibitor.

Correct perception of the geometrical curvature shape of the enzyme–inhi-
bitor structure implicated by electron density maps can be achieved with compu-
tationally much more demanding shading techniques such as the Gouraud (76)
and Phong algorithms (77). The former often fails, however, as it destroys infor-
mation in the highly curved regions of the surface because of linear interpolation
of vertex colors that cannot account for local shadow variations. In contrast, the
Phong shading approach interpolates the normal vectors for each geometric
orientation, computing the lighting equation in the subsequent step. Attempts
have been made to overcome some of the computationally intensive steps of
the procedure (78), but their performance was insufficient to be a reasonable
alternative to Gouraud shading in real-time applications. A much simpler solu-
tion is to use a special texture-mapping technique called normal mapping that is
a valuable aid for visualisation of highly complex enzyme active surfaces. In con-
trast to Phong shading, the interpolation is not performed directly as ‘‘normals’’
are used to automatically generate texture coordinates based on the orientation
of the surface vertices. The subsequent interpolation then takes place in 2D tex-
ture space, using the image of a perfectly rendered sphere as the texture. The
visual result compares exactly to a surface computed with the original Phong
approach.

3.3. Evolutionary Computing. Currently, most major pharmaceutical
companies use rational inhibitor design and evolutionary techniques such as
genetic algorithms or genetic function algorithm GFA as part of the inhibitor dis-
covery process. SYBYL (79) offer genetic algorithm-based conformational search
tools for exploring 3D shapes that inhibitors attain.

Neural network-based approach to modeling enzyme activity and designing
new inhibitor compounds has also been formulated. A new hybrid method (GNN)
(80) combining an artificial neural network and a genetic algorithm has been
developed for quantitative structure–activity relationship (QSAR) studies. The
genetic algorithm selects suitable sets of molecular descriptors to serve as inputs
to neural network, in which model-free mapping of multivariate data is per-
formed. Graphical description of the functional form of the descriptors (steric,
electrostatic, hydrophobic) is presented and it is these that play an important
role in determining activity of the inhibitor molecules. The effectiveness of
GNN is tested by comparing its results with a benchmark obtained by exhaustive
enumeration and different fitness strategies are examined from the evolution of
genetic models, and QSARs with higher predictiveness are found.

Evolutionary Molecular Design (EMD). This method identifies the activ-
ity that is required for the enzyme and focuses on the inhibitor structure rather
than the enzyme (81). Once the required activity has been identified for
the enzyme, a molecular assembler is used to identify structures that meet the
requirements identified for the enzyme. Genetic algorithms generate both the
virtual enzyme and the new inhibitor.
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GFA begins with a population of randomly constructed QSAR inhibitor
molecule models that are rated according to relative predictiveness using an
error measure (82,83). Experimental results against published data sets demon-
strate that GFA discovers models that are comparable to, and in some cases
superior to, models discovered using standard techniques such as stepwise
regression, linear regression, or partial least-squares regression. As the number
of computational and instrumentational sources of experimental data increase,
the ability of GFA to perform variable reduction, to discover nonlinear relation-
ships, and to present multiple models representing multiple interpretations
of the data set, may become increasingly useful in data analysis and enzyme–
inhibitor construction.

Genetic software techniques automatically design inhibitor molecules
under the control of a fitness function that must be capable of determining
which of two arbitrary molecules is better for a specific task. A population of ran-
dom molecules is first generated and these are then evolved toward greater fit-
ness by randomly combining parts of the better existing molecules to create new
molecules that eventually replace some of the less-fit molecules in the popula-
tion. A unique genetic crossover operator such as sets of atoms and connector
bonds are represented by genetic graphs and can evolve any possible molecule
given an appropriate fitness function. Inhibitors are generally small molecules
and it is known that they fit precisely into enzyme active sites to block normal
molecular processes that may occur in a living system. Furthermore, the inhibi-
tor molecules must survive within such living system. One approach to inhibitor
design is to find molecules that are similar to good drugs that have fewer nega-
tive side effects and consequently a candidate replacement drug is sufficiently
similar to have the same beneficial effect but is different enough to avoid the
side effects (84). Genetic software techniques used for enzyme–inhibitor design,
describes the obvious parts of mapping standard genetic algorithm techniques to
inhibitor design and the nonobvious portions: the crossover algorithm and fitness
function (85). These use two parameters: the digestion rate that breaks bonds,
and the dominance rate that controls how many parts of each parent appear in
the descendants. Inevitably this algorithm produces fragments rather than com-
pletely connected molecules.

Enzyme–inhibitor design may be viewed as searching the space of all pos-
sible molecules for inhibitors with particular properties. The key point in decid-
ing whether or not to use genetic algorithms for a particular problem centers
around the question: What is the space to be searched? If that space contains
structure that can be exploited by special-purpose search techniques, the use
of genetic algorithms is generally computationally less efficient. If the space to
be searched is relatively unstructured, and if an effective GA representation of
that space can be developed, then GAs provide a surprisingly powerful search
technique (86). It is reasonable to presume that searching the space of molecules
using genetic graphs will be profitable in a number of domains.

4. Future Prospects

4.1. Molecular Nanotechnology. With particular reference to enzyme-
inhibition, molecular nanotechnology can be defined as the 3D positional control
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of molecular structure to create the enzyme inhibitors to molecular precision
(87). Since the human body is comprised of molecules, the availability of molecu-
lar nanotechnology permits dramatic progress in human medical services and
inhibitor design. More than just an extension of ‘‘molecular medicine,’’ nanome-
dicine (88) is the preservation and improvement of human health using molecu-
lar tools and molecular knowledge and has extraordinary and far-reaching
implications for the medical profession, for the definition of disease, for the diag-
nosis and treatment of medical conditions and ultimately for the improvement
and extension of natural human biological structure and function. It must be
necessary to establish a set of basic capabilities, including physical, chemical,
thermodynamic, mechanical, physiological, immunological, cytological, and bio-
chemical limits of molecular systems in order to recognize, sort and transport
important inhibitor molecules; alter the shape or surface texture of the
enzyme-active site, and perform computations, disable living cells, pathogenic
bacteria, and viruses. The effectiveness of such systems critically depend on their
biocompatibility with diseased human organs, tissues, and biochemical systems.

Progress must continue in the synthesis and use of nanostructures for the
development of enzyme inhibitor implants delivered specifically to the site of
action. Future considerations should be borne on technical requirements in the
design and operation of biomedical nanobots that may not only be used as a mole-
cular tool but could be inserted into analytical instruments for fundamental
research and development on new drugs. A vast plethora of issues will be
addressed. These include nanoinhibitor failure, side effects of nanomedical treat-
ment, complex nanobotic systems for cell repair, tissue and organ manufactur-
ing, rapid cardiovascular repair, treatments for pathogenic disease and cancer,
response to physical trauma, burns and radiation exposure, spinal restoration
and brain repair, improved nutrition and digestion, sex and reproduction, cos-
metics, veterinary and space medicine, control of the ageing process, the future
of pharmaceutical companies, and the medical profession.

Cures for the major life-threatening diseases could be in-sight within the
next few years if such inhibitors against the enzymatic processes involved in
the molecular basis of the diseases could be manufactured using such revolution-
ary nanotechnology. Computer-assisted nanoinhibitor design could be at the cut-
ting edge of the technology and, in conjunction with nanobots, delivered at
relatively high, though safe concentrations, to any biological active region. In
this way they can ‘‘close-down’’ any external pathogen or virus, act as biosensors
in the detection of a threat by biological warfare or prevent tumor growth.

4.2. Molecular Engineering. With the advent of molecular engineer-
ing, the principle of developing a structure for a nanoinhibitor and its ‘‘modus
operandi’’ must satisfy prerequisites of being, at least, 100� smaller, 10,000�
cheaper and 1000� faster (87). Though there are differences of opinion when
referring to molecular engineering and the creation of microassemblers (89,90)
the development of the nanoinhibitor as a microchip and the role of the computer
as a delivery vehicle cannot be to far away into the future. Once molecular engi-
neered machines (nanobots) are the order of the day then one can exploit this to
make absolute copies of themselves thereby creating a second level of mass pro-
duction limited only by the materials and information therein. Self-replicating
microchip nanoinhibitors would be an absolute necessity to engineer molecules
on a 109 scale.
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There is no question that molecular engineering, nanoinhibitors and nano-
bots will be reality sooner than expected.
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