
FLUID MECHANICS

1. Introduction

Fluid mechanics is both a descriptive sc ience of the phenomena that occur when
fluids flow and a quantitative science showing how these phenomena may be
described in mathematical terms and predicted when appropriate conditions
are prescribed. To a practicing chemical technologist, fluid mechanics is an entire
body of knowledge, theoretical and empirical, qualitative and quantitative,
allowing analysis of the performance of complex plant equipment handling mov-
ing fluids. Before being in a position to calculate the details of a flow, one needs to
understand the phenomena well enough to model the process properly. At times
the technologist’s needs are best satisfied by an empirical correlation; at other
times the necessary skills consist largely of knowing how to apply the idealized
mathematical solutions to a practical situation.

This article provides a summary of our current understanding of flow phe-
nomena and their mathematical description and an introduction to advanced
methods of computation and measurement. Fluid mechanical applications are
widespread, extending over most fields of engineering and many applied
sciences, but the present article will be focussed on the main needs of a chemical
technologist, namely the design and operation of plant equipment and its inter-
action with the environment. More details on general and specific topics can be
found in many widely available textbooks, handbooks, journals, etc (1–15).

2. Mathematical Description of Fluid Motion

2.1. Fundamental Concepts. Fluid materials differ from solid materi-
als in that fluids are capable of unlimited deformation and will keep deforming,
as long as they are subjected to shear stresses, while solids will normally deform
only by a finite amount. In some instances, as during extrusion of very viscous or
plastic materials, one may encounter both fluid-like and solid-like behavior.
Although all materials consist of discrete particles, such as molecules and
atoms, most fluid mechanical phenomena can be adequately described under
the continuum hypothesis, which considers that the material properties of the
fluid are not affected by the process of subdivision, thus allowing the definition
of a fluid element as a material entity in the fluid having an infinitesimally small
volume. This idealization allows one to define derivatives at a mathematical
point. For example, the velocity vector at a point in the fluid is defined as

~VV ¼ lim
�t!0

�~ss

�t
¼ d~ss

dt
ð1Þ

where ~ss is the position vector of a fluid element that occupies that point and t is
time. The study of flow phenomena under the continuum hypothesis is only
appropriate when the changes of interest occur over length scales much larger
than molecular sizes or mean free paths between molecular collisions, so that
material properties are actually averages over a large number of molecules.
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There are cases, however, in which the continuum assumption breaks down, eg,
in rarefied gases or in aerosols of submicrometer particles. Then one must resort
to more general analytical models.

Fluid mechanics is an exact science, governed by three universal principles,
which have been confirmed by experimentation and are accepted as valid. These
are the law of the conservation of mass, including the law of conservation of indi-
vidual species, electric charge, etc; the energy principle, or first law of Thermo-
dynamics; and the momentum principle, ie, Newton’s second law.

The above principles are expressed in the form of mathematical equations
according to two general types of formulations, the integral and the differential
ones. In the integral formulation, the principles are applied to a system, consist-
ing always of the same fluid particles and possibly encompassing solid compo-
nents as well. Due to the highly deformable nature of fluids, and the difficulty
or impossibility of tracing the locations of all fluid elements at different times,
the integral formulation is usually applied over a control volume, rather than
a system. A control volume may contain different fluid elements at different
times, and the application of the fundamental principles requires that one
keeps track of fluid particles that enter or exit the control volume at any time
instant. The integral formulation is not concerned with local variations of proper-
ties within the control volume, but only overall changes. In contrast, the differ-
ential formulation, which expresses the fundamental principles as differential
equations valid at every location in the fluid, resolves local values of properties.
To solve the differential equations, one requires proper initial and/or boundary
conditions to be specified. The boundary conditions are usually easy to state,
at least where the boundaries are fixed in position. These usually correspond
to the physical requirement that there is a specified flow through, or stress at,
the boundary. On solid walls, this condition requires that the velocity component
of fluid particles normal to the wall must vanish (no penetration condition). On
interfaces between different phases, one often expresses this boundary condition
as a requirement that pressure-difference forces across the interface must bal-
ance surface tension forces. Real fluids, which exhibit viscosity (a resistance to
continuous deformation), also obey the principle of continuity of velocity, which
asserts that the velocity of a flowing fluid does not suffer discontinuous changes
at interfaces with other fluids or solids. As applied to flow past a solid wall,
it asserts that the fluid velocity relative to the wall decreases to zero as the
wall is approached (no slip condition).

The complexity of a mathematical solution procedure can be significantly
reduced with the use of simplifying approximations of the equations of motion.
In classical inviscid hydrodynamics, solid surfaces serve to confine or deflect
the flow (no penetration condition), but are assumed to offer no retardation
to the fluid, which maintains its mainstream velocity, even vanishingly
close to the surface. Although classical hydrodynamics is suitable for describing
kinematic features of the flow, it fails completely in other key areas; its most
notable failure is the incorrect prediction that a solid object immersed in a flow
experiences no net drag force from the fluid (D’Alembert’s paradox). The inclu-
sion of the no slip condition provides a more accurate prediction of flow phenom-
ena consistent with experimental observations. This statement serves to
emphasize that fluid mechanics still depends significantly on experiment to
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verify that a given mathematical or numerical solution does describe reality.
This is particularly true when multiple solutions are possible. Another common
type of simplifying approximation is to assume that the fluid is incompressible,
which means that its volume does not change as a result of pressure changes.
This assumption describes fairly well most flow phenomena in liquid flows as
well as in gas flows with velocities that are small compared to the speed of
sound. On the other hand, it fails to describe even qualitatively other important
phenomena, such as wave propagation.

2.2. Integral Equations of Motion. Some problems in fluid mechanics
can be solved to a sufficient degree of accuracy by examining only the overall bal-
ances of mass, momentum, and energy. In applying these balances, an appropri-
ate control volume is established first and the rates of accumulation of the
quantities within the volume are balanced against their rates of generation
within the volume and their rates of transport through the control surface,
which encloses the volume. In most cases, the volume of interest is fixed in
space, as for example the space within a pipe or tank. In other cases, as in
wave propagation, a moving control volume with an attached coordinate system
is more appropriate. A control volume showing the unit vector normal outwards
to the control surface and the flow velocity vector on the surface is sketched in
Figure 1a, while the same control volume showing the surface force and its
decomposition into normal and shear components is sketched in Figure 1b.

Conservation of Mass. The general equation for the conservation of mass
of a chemical species with concentration (mass per unit volume) ci is the scalar
equation:

@

@tB
cidB|fflfflfflfflffl{zfflfflfflfflffl}

rate of change in B

þ SciV cos �dS|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
convective flux through S

¼ �SJidS|fflfflfflfflffl{zfflfflfflfflffl}
diffusive flux through S

þ BRidB|fflfflffl{zfflfflffl}
production by

chemical reaction

ð2Þ

where t is time, B is the control volume, S is the control surface, V is the magni-
tude of the velocity, y is the angle between the velocity vector and the outward
normal vector on a control surface element, Ji is the boundary flux through difu-
sion and Ri is the rate of production of species i by chemical reaction.
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Fig. 1. Sketches of a typical control volume showing (a) the surface velocity and (b) the
surface force.
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Momentum Equation. The general equation for the balance of momen-
tum is the vector equation:

@

@tB
�~VVdB|fflfflfflfflfflffl{zfflfflfflfflfflffl}

rate of change in B

þ S�~VVV cos �dS|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
convective flux through S

¼ B
~FFBdS|fflfflfflffl{zfflfflfflffl}

net body force

þ S
~FFSdB|fflfflfflffl{zfflfflfflffl}

net surface force

ð3Þ

where r is the fluid density. The two terms on the right-hand side represent the
external forces applied on the control volume. The body forces arise from gravi-
tational, electrostatic, and magnetic fields. The surface forces are the shear and
normal forces acting on the fluid at its boundary; difusion of momentum, as man-
ifested in viscosity, is included in these terms. In practice, the vector equation is
usually resolved into its Cartesian components and the normal stresses are set
equal to the pressures over those surfaces through which fluid is flowing.

Energy Equation. The specific (ie, per unit mass) energy of a flowing fluid
is the sum of its internal, kinetic and potential specific energies:

e ¼ uþ V2

2
þ gh ð4Þ

where h is the vertical elevation in the earth’s gravitational field. The equation
describing the conservation of energy, also expressing the first law of Thermody-
namics, is the scalar equation:

@

@tB
� edB|fflfflfflfflfflffl{zfflfflfflfflfflffl}

rate of change in B

þ aS� eþ P

�

� �
Vcos �dS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

convective flux through S

¼ Q|{z}
heat transfer rate
from surroundings

� Wsh|{z}
mechanical power by
shear stresses on S

� Wother|fflfflffl{zfflfflffl}
electrochemical=radiation
power to surroundings

ð5Þ

Note that the term containing the pressure P actually represents mechanical
power by normal stresses on S, but has been grouped with the specific energy
flux for convenience.

2.3. Differential Equations of Motion. The differential equations of
motion can be derived from the corresponding integral ones, by letting the con-
trol volume vanish. These equations may be expressed in a coordinate system
moving with the body (the Lagrangian viewpoint) or in a fixed coordinate system
(the Eulerian viewpoint). In the following, we shall present the mass and
momentum equations from the Eulerian viewpoint using a Cartesian coordinate
system xi, i¼ 1,2,3 and a control volume dB¼dx1dx2dx3. The velocity vector in
this system is expressed as Ui, i¼ 1,2,3. The same equations in other coordinate
systems and the differential energy equation are described in the general refer-
ences mentioned above.

Conservation of Mass. Neglecting diffusion and chemical reactions,
the differential mass conservation equation, also commonly referred to as the
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continuity equation, is written as

@�

@t
þ
X3
i¼1

@ð�UiÞ
@xi

¼ 0 ð6Þ

For incompressible fluids, the density is constant and the continuity equation is
simplified to

X3
i¼1

@Ui

@xi
¼ 0 ð7Þ

Momentum Equation. This equation is derived by applying Newton’s
second law on an infinitesimal control volume, containing a fluid element. For
a rigid body, this law states that the sum of external forces equals the product
of its mass and its acceleration. In an Eulerian viewpoint formulation, the
(total) acceleration of a fluid element is expressed as

DUi

Dt
¼ @Ui

�t
þ
X3
j¼1

Uj
@Ui

@xj
; i ¼ 1; 2; 3 ð8Þ

in which the first term on the right-hand side is the local acceleration and the
sum of the three other terms is the convective acceleration. The deformation
rates of the fluid in different directions form the rate of strain tensor, expressed
as

ei j ¼ 1

2

@Ui

@xj
þ @Uj

@xi

� �
; i; j ¼ 1; 2;3 ð9Þ

Next, it is necessary to understand the nature of the forces that might be
exerted on this volume. There may be body forces, which, in Newtonian
mechanics, are pictured as acting at a distance and include gravitational, electro-
static, and magnetic forces; if a noninertial frame of reference is used, one must
also consider equivalent forces resulting from accelerations of the frame, eg, the
centrifugal force. In addition, there are surface forces, exerted on the faces or
edges of the element. Surface stresses arise from intermolecular forces and
motions of molecules. At boundaries between phases, additional forces, which
are generalizations of surface tension, must be included. Surface forces per unit
surface area are called stresses. In the general case of an arbitrary surface ele-
ment (Fig. 1b), one can define a normal stress and a shear stress as, respectively,

� ¼ dFn

dS
and � ¼ dFt

dS
ð10Þ

When considering all stresses applied on an element with faces normal to
the Cartesian axes and with all surface forces decomposed to their Cartesian
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components, one would define stresses as the components of a symmetrical,
second-order tensor (see Fig. 2)

�1 �12 �13
�21 �2 �23
�31 �32 �3

2
4

3
5 ð11Þ

In thermodynamics, pressure is defined as work by the fluid per unit
volume. In fluid mechanics, pressure is defined as the average normal stress

P ¼ � 1

3
ð�1 þ �2 þ �3Þ ð12Þ

The negative sign is the result of the conventions that pressure is positive when
compressive, while normal stresses are positive when tensile. In most cases, but
not always, the fluid mechanical pressure may be taken as equal to the thermo-
dynamic pressure. The variation of stresses along the Cartesian axes can be
found by a Taylor series expansion, as, eg,

�01ðx1 þ dx1Þ � �1ðx1Þ þ @�1
@x1

dx1 ð13Þ

σ′3

σ′1

σ2

σ3

σ1

σ′2

τ′32

τ′23

τ′31

τ′21
τ′13

τ′12

τ31 τ33

τ21

τ12

τ12

τ13

x3

x2

x1

dx3

dx1

dx2

Fig. 2. Definition of stresses on a fluid element whose sides are aligned with the
Cartesian axes. The positive directions of stresses are as indicated.
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Taking the above definitions into account, one may derive the differential
momentum equation for a fluid element in Cartesian component form as

�
DUi

Dt
¼ fi þ @�i

@xi
þ @�ki
@xk

þ @�mi

@xm
; i ¼ 1; 2; 3; i 6¼ k 6¼ m ð14Þ

where fi is the body force per unit volume.
Equation 14 gives the relation between stresses and acceleration obtained

from momentum balance. The system of equations 6 (or 7) and 14 is not solvable,
as it contains far too many unknowns. To proceed further, one needs to introduce
appropriate constitutive equations, which codify the material properties through
additional relations between the stresses and the rates of strain. The constitutive
equations for a given fluid are found empirically or theoretically by use of some
theory of material properties. The simplest model is one in which the various
stresses are expressed as linear combinations of the rates of strain. When the
fluid is homogeneous and isotropic, these relationships are simplified to ones
that require only two material constants to be specified, the shear viscosity m,
and the dilatational viscosity l. Further adopting the plausible condition
� ¼ 2=3m, which is strictly valid only for incompressible fluids, one ends up
expressing the stress–strain relationships using a single constant m as

�i ¼ �Pþ 2�
@Ui

@xi
� 2

3
�
X3
n¼1

@Un

@xn
; i ¼ 1; 2; 3 ð15Þ

�ij ¼ �ji ¼ �
@Ui

j
þ @Uj

@xi

� �
; i; j ¼ 1; 2; 3; i 6¼ j ð16Þ

Fluids that are described by such relationships are called Newtonian. The shear
stresses are proportional to the viscosity, in accordance with experience and
intuition. However, the normal stresses also have viscosity-dependent compo-
nents, which is not an intuitively obvious result. For flow problems in which
the viscosity is vanishingly small, the normal stress component is negligible,
but for fluid of high viscosity, eg, polymer melts, it can be significant and even
dominant. Substitution of these expressions into equations 14 leads to the
Navier-Stokes (N-S) equations

�
DUi

Dt
¼ fi � @P

@xi
þ @

@xi
� 2

@Ui

@xi
� 2

3

X3
n¼1

@Un

@xn

 !" #
þ @

@xk

� 2
@Ui

@xk
þ @Uk

@xi

� �� �
þ @

@xm
� 2

@Ui

@xm
þ @Um

@xi

� �� �
; i ¼ 1; 2; 3; i 6¼ k 6¼ m

ð17Þ
Further assuming that the viscosity is uniform in space, one gets the simplified
and most commonly used N-S equation form

�
DUi

Dt
¼ fi � @P

@xi
þ �

X3
n¼ 1

@2Ui

@x2n
; i ¼ 1; 2; 3 ð18Þ
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Equations 7 and 18 form a closed system of four equations with four unknowns, P
and Ui, i¼ 1,2,3 (the body force, the density and the viscosity are assumed to be
known by other means). Thus, given appropriate boundary and/or initial condi-
tions, one may, at least in principle, solve these equations to compute the local
velocity and pressure in incompressible Newtonian flows.

For some materials, the linear constitutive relation of Newtonian fluids
is not accurate. Either stress depends on strain in amore complexway, or variables
other than the instantaneous rate of strainmust be taken into account. Such fluids
are known collectively as non-Newtonian. Many different types of behavior have
been observed, ranging from fluids for which the viscosity in the Navier-Stokes
equation is a simple function of the shear rate to the so-called viscoelastic fluids,
for which the constitutive equation is so different that the normal stresses can
cause the fluid to flow in amanner opposite to that predicted for a Newtonian fluid.

There is actually a constitutive equation that is even simpler than that for
the Newtonian fluid. This arises when internal fluid friction is neglected.
Although this is not precisely true for a real fluid (the closest case would be liquid
helium at temperatures <2 K), in many situations the flows calculated under
this assumption are very close to those actually observed, at least in a significant
portion of the flow field. Examples are high speed flows around obstacles in
regions well away from solid boundaries or from wake regions. The importance
of the frictionless flow theory lies in the wide variety of available solutions and in
the powerful techniques of calculation available. When friction is neglected, the
Navier-Stokes equations are simplified to the Euler equations

�
DUi

Dt
¼ fi � @P

@xi
; i ¼ 1; 2; 3 ð19Þ

which also form a closed system with the continuity equation 7.
By integrating the Euler equations along any streamline in the fluid and

assuming that the body force is entirely gravitational, the flow is steady and
the fluid is incompressible, one can derive the Bernoulli equation as

P

�
þ V2

2
þ gh ¼ const along a streamline ð20Þ

where h is the vertical elevation. One may actually derive Bernoulli’s equation
for the more general case of barotropic fluid (ie, one whose density is a function
of pressure, as in the atmosphere and the oceans) to a form that replaces the
pressure term by (1/r) dP. An unsteady form of Bernoulli’s equation is also avail-
able. The value of the constant in equation 20 is generally different for different
streamlines. Bernoulli’s equation can provide the pressure as a function of velo-
city, making the solution of the momentum equation unnecessary. Continuity
equation 7 alone cannot be solved for the velocity and additional assumptions
are required. An assumption that is often made to simplify analysis of many pro-
blems in hydrodynamics and aerodynamics is that the flow is irrotational,
namely, that its vorticity vector, defined as

~�� ¼ curl~VV ð21Þ
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vanishes everywhere in the flow. Then, it becomes possible to define a scalar
property, called the velocity potential, as

	 ¼ grad~VV ð22Þ

and the continuity equation can be written as

X3
i¼1

@2	

@x2i
¼ 0 ð23Þ

Equation 23 is Laplace’s equation, which also occurs in several other fields of
mathematical physics, and can be solved analytically, numerically, and even gra-
phically, much easier than the Navier-Stokes or Euler equations. An alternative
approach for two-dimensional flow is to introduce a stream function c as

U1 ¼ @ 

@x2
; U2 ¼ � @ 

@x1
ð24Þ

While the stream function automatically satisfies the two-dimensional, incom-
pressible, continuity equation, the requirement that the flow is also irrotational
leads to the equation

X2
i¼ 1

@2 

@x2i
¼ 0 ð25Þ

which is also Laplace’s equation. Although the boundary conditions would differ,
the approaches of using the velocity potential or the stream function to find the
velocity of incompressible irrotational flows are mathematically equivalent.

2.4. Dimensional Analysis, Similarity and Modeling. The majority
of technological flow problems are not solved by integrating the equations of
motion. Instead, most are solved by carrying out laboratory experiments whose
results are correlated, so as to yield useful information about systems that may
differ greatly in size and in fluid properties. For the behavior of the experimental
model to duplicate that of a system of interest, two criteria must, in principle, be
met: first, the experimental apparatus must be geometrically similar to the sys-
tem of interest; and second, certain dimensionless groupings of variables must be
matched on the two systems. There are two basic methods available for deter-
mining the dimensionless groups appropriate to a given situation: dimensional
analysis, which can be applied when the equations governing the process are
not known; and similarity analysis, which proceeds from the governing equations
and offers physical insights into the meanings of the groups.

Dimensional analysis is a mathematical technique that proceeds from the
general principle that physical laws must be independent of the units of mea-
surement used to express them. If one quantity is related to a group of other
quantities, the quantities comprising the group must be related in such a manner
that the net units or dimensions of the group are the same as those of the depen-
dent quantity. A dimensionless group can then be formed immediately by
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division. A useful tool, the Buckingham Pi theorem, asserts that the number of
dimensionless groups needed to describe a situation is equal to the total number
of variables less the number of fundamental dimensions needed to express them.
Fundamental dimensions are generally taken to be length, time, mass, tempera-
ture, and heat content. The Pi theorem is a powerful tool because it limits the
amount of experimental work needed to establish a general relationship. For
example, consider the problem of determining the drag force FD on a smooth
sphere around which a Newtonian fluid is flowing. The diameter of the sphere
D and the fluid viscosity m, density r, and velocity V may vary. Each of the
five variables can be expressed using various combinations of the three dimen-
sions mass, length, and time (by Newton’s second law, force equals mass times
length per the square of time). The Pi theorem leads immediately to the conclu-
sion that only two dimensionless numbers are needed to describe the relation-
ship. These may be taken to be a drag coefficient FD=

1
2 �V

2
D2=4 and a
Reynolds number rVD/m. An accurate set of measurements for one sphere in
one fluid provides a universal relationship between these numbers that is applic-
able to all spheres in all Newtonian fluids, unless other phenomena, such as com-
pressibility or the proximity of a free surface, are involved.

The strength of dimensional analysis lies in its ability to limit the number of
studies that need to be made and to handle situations in which the governing
equations are not known. It can even handle lack of geometrical symmetry by
using ratios of important dimensions as additional dimensionless groups. Its
weakness lies in the need to know which variables must be included and
which can be ignored, and in its awkwardness when handling several variables
that have the same dimensions, eg, densities in multiphase mixtures. This last
difficulty reflects the fact that dimensional analysis is not capable of describing
the functional relationship among the dimensionless groups, nor is it capable of
describing how an empirical relationship might be extrapolated outside the
range covered by the original data. It is not even capable of selecting the best
set of dimensionless groups, because products, sums, quotients, and differences
of dimensionless groups are also dimensionless. To achieve the simplest, most
meaningful relationship and to judge how it might best be extrapolated, it is
necessary for the investigator to use previous experience, similarity analysis,
or physical insight.

Similarity analysis starts from the equation describing a system and pro-
ceeds by expressing all of the dimensional variables and boundary conditions in
the equation in reduced or normalized form. Velocities, eg, are expressed in terms
of some reference velocity in the system, eg, the average velocity. When the equa-
tion is rewritten in this manner certain dimensionless groupings of the reference
variables appear as coefficients, and the dimensional variables are replaced by
their normalized versions. If another physical system could be described by the
same equation with the same numerical values of the coefficients, then the solu-
tions to the two equations (normalized variables) would be identical and either
system would be an accurate model of the other.

The principle can be illustrated by examining the Navier-Stokes equation 18
for incompressible flow with constant viscosity, in a gravitational field in which
the body force per unit volume is fi¼ rgi, where gi is the gravitational accelera-
tion vector. All variables in the system can be expressed in dimensionless forms,
indicated by asterisks. All lengths are made dimensionless by dividing them by a
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fixed length Lo, which usually is a characteristic geometrical dimension of the
problem. Velocity can be expressed as Ui

*¼Ui /Vo where Vo is a fixed reference
velocity. Time is made dimensionless by the resulting time scale Lo /Vo, gi ¼ gg�i
and pressure is non-dimensionalized by a reference value Po. Then, equation 18
can be written in dimensionless form as

@U�
i

@t�
þ
X3
j¼1

U�
j

@U�
i

@x�j
¼ gLo

V2
o

� �
g�i �

Po

�V2
o

� �
@P�

@x�i
þ �

�VoLo

� �X3
n¼1

@2U�
i

@x�2n
; i ¼ 1; 2; 3 ð26Þ

The dimensionless quantities in brackets are, respectively, identified as the reci-
procal of the Froude number Fr, the Euler number Eu, and the reciprocal of the
Reynolds number Re for the system. Considering that the Navier-Stokes equation
is a momentum balance, one is reminded that the left hand side of equation 26
is the dimensionless acceleration of a fluid element, or, to adopt an old-fashioned
expression, the opposite of a dimensionless ‘‘inertia force’’, while the three terms
on the right-hand side are, respectively, the dimensionless gravitational, pres-
sure and viscous forces. Two flow systems with geometrically similar boundaries
in which all three dimensionless groups are matched would be governed by iden-
tical dimensionless equations and the solutions of one system would also apply to
the other, provided that they are multiplied by appropriate scales. This is a
mathematical proof of dynamic similarity.

In addition to the above important conclusion, similarity analysis also
provides a means of simplifying the solution of a problem by order-of-magnitude
analysis. Without claiming mathematical rigor, one may hypothesize that dimen-
sionless properties are all of order one, reflecting the expectation that the scales
have been chosen appropriately. Then, the orders of magnitude of the different
terms in equation 26 can be estimated by the ratios of their coefficients. Thus, the
Reynolds number may be viewed as representing the ratio of inertia force to vis-
cous force. Of course, this Reynolds number is based on single values of the velo-
city and length scales and should describe the system only in a global sense, as
the ratio of inertia and viscous forces may vary widely throughout the system.
Even so, one may say that, when the Reynolds number is extremely small, vis-
cous forces would dominate over inertia forces, and assert that fluid inertia (ie,
acceleration) may be neglected in the analysis. Similarly, the Froude number
represents the square root of the ratio of inertia force and gravitational force.
When the Froude number is very large, gravitational effects may be neglected.
In this procedure, one may compare the orders of magnitude of the different
terms in equation 26 and neglect the ones that are much smaller than others.

In addition to the Reynolds, Froude, and Euler numbers, a large number of
other dimensionless groups have been in use in fluid mechanics, heat transfer
and related disciplines. A partial list is given below (16), while many others
can be found in reference 10.

� Mach number:

M ¼ V

c
ð27Þ

where c is the speed of sound; it represents the ratio of the inertia and elas-
tic forces (compressibility).
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� Prandtl number:

Pr ¼ �

�
¼ cp�

k
ð28Þ

where g is the thermal diffusivity, cp is the specific heat under constant
pressure and k is the thermal conductivity of the fluid; it represents
the ratio of the rates of diffusion of momentum and heat due to molecular
motions.

� Schmidt number:

Sc ¼ �

�c
ð29Þ

where gc is the molecular diffusivity of a species in a fluid mixture; it repre-
sents the ratio of the rates of diffusion of momentum and mass in the fluid.

� Weber number (for liquids):

We ¼ �V2L

�
ð30Þ

where s is the surface tension; We represents the ratio of the inertia to the
surface tension forces.

� Capillary number (for two-phase flows):

Ca ¼ �V

�
ð31Þ

� Cavitation number (for liquids):

�c ¼ P� Pv

1
2 �V

2
ð32Þ

where Pv is the vapor pressure.

� Nusselt number:

Nu ¼ hL

k
ð33Þ

where h is the overall heat transfer coefficient and k is the thermal
conductivity of the fluid; it represents the ratio of total and conductive
heat transfer rates in a fluid.

� Grashof number:

Gr ¼ gL3�T

�2
ð34Þ

where a is the thermal expansion coefficient and D T is a temperature dif-
ference; it represents the ratio of buoyancy force and viscous force.

� Péclet number:

Pe ¼ VL

k
ð¼ RePrÞ ð35Þ

it represents the ratio of heat convection and heat conduction.
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� Rayleigh number (for free thermal convection):

Ra ¼ gL3�T

vk
¼ g @�

@T L
3�T

�k
ð¼ GrPrÞ ð36Þ

� Marangoni number (for convection induced by surface tension gradients):

Ma ¼
@�
@c

@c
@x L

2

��c
ðfor concentration gradientsÞ ð37Þ

Ma ¼
@�
@T

@T
@x L

2

��
ðfor temperature gradientsÞ ð38Þ

� Richardson number (for density-stratified flows):

Ri ¼ � g�=h

�ðV=hÞ2 ¼ � gh

V2
¼ �Fr�

1
2 ð39Þ

it represents the ratio of potential energy associated with gravity and
kinetic energy.

� Taylor number (for rotating flows):

Ta ¼ �2L4

v2
ð40Þ

where � is the rotation rate.

� Rossby number (for rotating flows):

Ro ¼ V

�L
ð41Þ

it represents the ratio of inertia and Coriolis forces.

� Strouhal number (for periodic vortex shedding from bluff objects):

St ¼ fL

V
ð42Þ

where f is the frequency of vortex shedding.

� Knudsen number for gases:

Kn ¼ �

L
ð43Þ

where l is the mean free path.

The principal difficulty faced by the experimenter in applying the results of
dimensional or similarity analysis is that often there is insufficient freedom with
respect to the physical properties of the modeling fluids to match all of the poten-
tially important dimensionless groups. Construction and interpretation of the
model rests largely on the experience and judgment of the experimenter as to
which groups can safely be ignored within the accuracy desired. In some cases,
useful results can be obtained even when none of the dimensionless groups can
be matched. An example is the use of small-scale models in wind tunnels to study
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the turbulent dispersion of materials released to the atmosphere in the vicinity of
complex structures such as refineries or orchards. It may not be practical or pos-
sible to match the Reynolds number by increasing wind velocity in inverse pro-
portion to the reduction in scale. Instead, use is made of the observation that,
when the Reynolds number based on the characteristic dimension of the struc-
ture exceeds about 104, one can reasonably expect many average properties of
the flows to be similar, ie, turbulent fluctuations to be proportional to the mean
velocity and the wakes of the structures to be geometrically similar. Although
flow fields around small elements of the structure are not duplicated, the overall
error from this approximation is less than would result from an attempt to cal-
culate the dispersion by combining the correlations for individual structures.

2.5. Turbulent Flows. Although the space-time dependence of velocity
and pressure in turbulent flows is accurately described by the same general
continuity and momentum equations as in laminar flows, turbulent pro-
perties change far too rapidly and randomly to be of interest in their entirety.
In most engineering applications, interest lies instead in their statistical
averages (17–19). The most general type of averaging is ensemble averaging,
in which all properties are averages over a large number of repeated realizations
of the same experiment (17–19). Then, one may introduce the Reynolds decom-
position, by which an individual value of the velocity Ui at a time instant and
location is decomposed into an average value hUii, to be denoted by angle brack-
ets, and a fluctuation ui, to be denoted by a lower case symbol, ie,

Ui ¼ hUii þ ui ð44Þ

Similarly, the pressure is decomposed as

P ¼ hPi þ p ð45Þ

By definition, the averages of fluctuations vanish, ie,

huii ¼ 0; hpi ¼ 0 ð46Þ

Under certain conditions, statistical properties may be considered as indepen-
dent of time shift, in which case the flow is called stationary and time averages,
to be denoted by overbars, can be defined as

�UUi ¼ lim
T! 0

1

T

ðT
0

Uidt ð47Þ

If the statistical properties of all independent realizations (ensemble members)
coincide, in which case the flow is called ergodic, time averages would be the
same as ensemble averages.

Equations governing statistical averages in turbulent flows can be obtained
by substituting the Reynolds-decomposed properties into the equations of motion
and then averaging all terms. Then, one would obtain the Reynolds-averaged
equations. For example, applying this process to the continuity and momentum
equations for an incompressible, Newtonian fluid with constant properties and in
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the absence of body forces would lead to the set

X3
i¼ 1

@hUii
@xi

¼ 0 ð48Þ

�
@hUii
@t

þ �
X3
j¼ 1

hUji @hUii
@xi

¼ � @hPi
@xi

þ �
X3
j¼ 1

@2hUii
@x2j

� �
X3
j¼ 1

@huiuji
@xj

ð49Þ

Unlike the original set of four equations that contained only four unknowns,
Ui, i¼ 1,2,3, and P, the above set contains 10 unknowns, the four means hUii,
i¼ 1,2,3, and hPi, and the nine turbulent or Reynolds ‘‘stresses’’ r huiuji, only
six of which are independent. The Reynolds stress r hu1u2i, eg, is the rate at
which x1-momentum per unit volume r u1 is being transported in the x2-direction
by the velocity fluctuation u2. Any attempt to produce additional equations for
the Reynolds stresses, based on the basic equations of motion and statistical
procedures, would introduce many more unknowns, such as averages of triple
products of fluctuations. Thus, the Reynolds averaging process produces an
open hierarchy of equations, which can only be closed by the introduction of tur-
bulence models, namely empirical relationships among the various statistical
properties. This topic will be further discussed in the section Computational
Fluid Dynamics.

3. Specific Flows

3.1. Internal Flows. Flows that are confined by solid walls, except at
inlet and outlet ports, are called internal. They include flows in pipes, ducts,
channels and various types of machinery. On the boundary, the fluid exercises
normal and shear stresses on the wall, which result on a force on the wall and
pressure losses in the fluid. A common configuration is that of ‘‘fully developed’’
flow in a long, straight circular pipe with a uniform diameter, D, far from the
entrance. In this case, the local mean flow velocity throughout the cross-section
is parallel to the pipe axis and the pressure loss DP along a pipe section with
length L can be expressed in dimensionless form by the friction factor:

f ¼ 1

ðL=DÞ
�P

1
2 �U

2
b

ð50Þ

whereUb is the bulk velocity in the pipe, namely, the volumetric flow rate divided
by the pipe cross-sectional area. The friction coefficient depends on the Reynolds
number Re¼ rUbD/m and the relative roughness e/D, where e is the wall rough-
ness characteristic height.

Two distinct states of fully developed flow are observed in a pipe. At low
Reynolds numbers, the flow is laminar and the fluid flows in concentric cylindri-
cal sheaths or laminae that do not mix with each other. A stream of dye intro-
duced into the fluid proceeds down the pipe as a thread, spreading only
slightly by molecular diffusion. The velocity profile is parabolic, with the velocity
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decreasing from twice the average velocity at the axis to zero at the wall. This is
easily demonstrated by solving the Navier-Stokes equations, which take on a
rather simple form in this configuration. The friction coefficient takes the simple
theoretical form

f ¼ 64

Re
ð51Þ

When the Reynolds number increases to nominally about Re& 2, 100 for com-
mercial pipes, an abrupt change occurs. Random instabilities, which decay at
lower velocities, grow, destroying the laminar flow pattern. At Re& 10,000,
the transformation is nearly complete. This process is called transition to turbu-
lence. The velocity over most of the pipe, called the core, becomes fairly uniform,
about equal to the average velocity. Only in a thin region near the wall is the
radial variation of the velocity substantial. Frictional losses for turbulent pipe
flows cannot be predicted theoretically; instead, they are based on empirical
correlations. For extremely smooth pipes, one may use the Blasius correlation

f ¼ 0:316

Re1=4
ð52Þ

while, for rough-wall pipes, a popular implicit relationship for f is the Colebrook
correlation

1ffiffiffi
f

p ¼ �2:0 log
e=D

3:7
þ 2:51

Re
ffiffiffi
f

p
 !

ð53Þ

Most commonly, the friction factor is found from the Moody diagram, shown in
Figure 3. Notice that, for a given e/D, the turbulent flow regime contains a high
Reynolds number region in which f is essentially constant. This region is called
the ‘‘fully rough’’ zone.

Pressure losses associated with fully developed pipe flow are termed as
‘‘major losses’’. All other losses, associated with the entrance region, flow area
changes, direction changes, flow through valves and other devices and loss of
kinetic energy at the exit, are collectively termed as ‘‘minor losses’’, even when
they represent the majority of total losses. Additional losses occur in the entrance
region of the pipe, where the flow velocity profile develops from a nominally uni-
form one towards its fully developed one. For laminar flow in a tube, the entrance
length, defined as the distance required for the velocity at the center line to reach
99% of its asymptotic value, is given by

Lent

D
� 0:06Re ð54Þ

while, for turbulent flow, Lent/D& 25� 40. Throughout the entrance region, the
velocity gradient at the wall is larger than for the fully developed profile, produ-
cing a higher pressure drop and greater heat transfer per unit length than for
fully developed flow. Although entrance phenomena are often ignored, these
can be of significance, especially in capillary viscometers and compact (short
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tube) heat exchangers. The entrance losses depend on the shape of the entrance
and can be significantly reduced by using a bell-mouth entry. When a flow
expands abruptly, separation occurs producing a jet of fluid flanked by recirculat-
ing eddies. For turbulent flows, separation occurs in a diverging duct when
the angle of divergence exceeds �78. When separation occurs, the ability of the
fluid to recover pressure upon deceleration is seriously impaired because the
kinetic energy is lost to friction. When the ratio of duct areas is large, all of
the kinetic energy is lost and no pressure is recovered. Further details about
minor losses in pipes can be found in standard references (1-3,6,13).

Although the above discussion concerns circular pipes, it can be approxi-
mately applied to ducts and open channels with different cross-sectional shapes,
if the pipe diameter D is replaced by the hydraulic diameter

Dh ¼ 4A

P
ð55Þ

where A is the cross-sectional area filled with flowing fluid and P is the wetted peri-
meter, namely, the part of the perimeter that is in contact with the fluid. The appro-
priate Reynolds number would be based on Dh and the actual bulk velocity Ub.

3.2. Flows Near Solid Walls. Except at very low Reynolds numbers,
the flow field past immersed solid boundaries can be divided into two reasonably
well-defined regions: a thin region close to the surface, called the boundary layer,
in which the gradient of tangential velocity is large and shear stresses are

Fig. 3. Moody diagram showing the friction factor for fully developed pipe flow [repro-
duced from (1) with permission].
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important; and a region away form the boundary, called the free stream, in
which velocity gradients are small, resulting in small or negligible viscous stres-
ses. The concept of the boundary layer was originally developed by Prandtl (20).
The edge of the boundary layer is taken to be the point at which the velocity dif-
fers from that in the free stream by some small amount, say 1%. This approxima-
tion allows the main flow field and the normal stresses on the surface to be
calculated by solving Euler equations, or even easier, Laplace’s equation for
the velocity potential, with the boundary layer calculation then appended to
yield the shear stresses at the surface. Extensive treatises have been devoted
to analyzing flows in terms of boundary layer phenomena (12,21,22). Although
boundary layer analysis is widely applicable, it can fail badly in regions of strong
deceleration where the boundary layer flow can separate under the influence of
the unfavorable pressure gradient imposed by the main flow. This is illustrated
in Figure 4, showing separation of a laminar boundary layer from the surface of a
circular cylinder, at Re& 1,000. Separation is a result of the inability of the
slowly moving fluid near the surface to move against an increasing pressure gra-
dient. As the bulk of the fluid passes over the forward face of the cylinder and
accelerates, it decreases in pressure. The fluid in the boundary layer also accel-
erates, although by a much smaller amount because of the retarding effects of
viscous stresses. Over the rear face of the cylinder, the bulk fluid decelerates
and pressure rises. This pressure gradient decelerates the already slowly moving
fluid near the boundary, brings it to rest, and, as pressure continues to rise,
reverses the flow at the surface and lifts the boundary layer. The position at
which the wall shear stress becomes zero is the point of separation.

When the flow is bounded on only one side, the boundary layer can, in the-
ory, grow indefinitely, albeit slowly, into the surrounding fluid. Flow past a
smooth flat plate illustrates this behavior. As the fluid passes the leading edge
of the plate, a boundary layer begins to grow. Initially this layer is laminar
and its profile and growth rate can be calculated easily by solving the Navier-
Stokes equations using the concept of boundary layer approximation; this is
known as the Blasius solution and applies to all two-dimensional, laminar
boundary layers over plane walls (1). The boundary layer grows steadily with

V

Free stream

Vx

Vθ

θ

x

A

Vθ

Vx
Vx

Vθ

Outer edge of
boundary

Velocity = 0

Reverse flow

dVθ
dr

= 0

∞

Fig. 4. Boundary layer development and separation from the surface of a smooth circular
cylinder at Re1=4 1000; A is the separation point.
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distance x from the plate’s start. When the Reynolds number rxV1/m (V1 is the
uniform free stream velocity) reaches a typical value of �4� 105 for practical con-
figurations, the laminar boundary has grown so thick that it is unstable to even
small disturbances. The oscillations caused by disturbances from the outer flow
are not damped but are transformed into vortices that break down into the ran-
dom eddies of turbulence. This process, called transition to turbulence, is almost
complete when the Reynolds number reaches �4� 106. Turbulence allows a
higher rate of transfer of momentum within the fluid; consequently, transition
is accompanied by a considerable increase in the thickness of the boundary
layer. The turbulent boundary layer can be further subdivided into: a viscous
(or laminar) sublayer, which is a very thin layer in contact with the wall and in
which viscous stresses dominate over turbulent stresses and the flow velocity
grows linearly with distance form the wall; a buffer sublayer, intermediate
between the viscous and the logarithmic sublayer; a logarithmic sublayer, in
which the mean velocity follows a logarithmic variation with respect to distance
from the wall; up to the edge of the logarithmic sublayer, one may reason-
ably assume that flow properties are universal and apply to all turbulent boundary
layers; and an outer sublayer, whose properties depend strongly on the geometry
and Reynolds number.

3.3. Flows Past Solid Bodies. A fluid moving past a solid body exerts a
drag force on the solid. Both shear stresses and normal stresses can contribute to
the drag, commonly referred to as skin friction drag and form or pressure drag,
respectively. Their relative importance depends on the shape of the body and the
Reynolds number. Body shapes (eg, wings) for which skin friction drag predomi-
nates are called streamlined, while those shapes (eg, buildings) for which form
drag dominates are called bluff. At extremely low Reynolds numbers (eg, <1),
skin friction drag always dominates. The combined drag force is expressed in
terms of the dimensionless drag coefficient:

CD ¼ FD

1
2 �AV

2
ð56Þ

where A is the frontal area, namely the projected area normal to the stream.
At very low Reynolds numbers (Re <1), CD for all bluff objects varies inversely
proportionally to the Reynolds number (for spheres, the Stokes solution is
CD¼ 24/Re), while at high Reynolds numbers (typically Re >1000), CD is nearly
constant, with the exception of the critical Rerange, observed for objects with
rounded contours, but not those with sharp edges. The variations of CD with
Reynolds number for flows past smooth spheres and circular cylinders are
shown in Figure 5.

The variation of drag coefficient is closely associated with the flow pattern
around the object, which depends both on the body shape and the Reynolds
number. As an example, Figure 6 shows such flow patterns for a high length-
to-diameter ratio, smooth circular cylinder with its axis perpendicular to the
stream and the different ranges are summarized below.

� Re �1 (roughly up to 1): The flow around the cylinder is nearly symmetri-
cal front-to-back as well as side-to-side. Fluid passing near the cylinder
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accelerates over the upstream face and decelerates over the downstream
face. Normal stresses on these faces largely cancel each other and drag
results almost entirely from skin friction.

� 1< Re <4: As Re increases, the flow becomes increasingly asymmetrical.
Under the influence of fluid inertia, the fluid streamlines crowd together
on the upstream face of the cylinder and spread further apart on the down-
stream side. This imbalance is reflected in an imbalance in normal stresses
and the emergence of form drag.

� 4< Re <47: Flow separation occurs symmetrically on the downstream side;
the fluid flowing next to the surface of the cylinder departs abruptly from
the surface, the gap formed being filled by a pair of recirculating, laminar

Fig. 5. Drag coefficient for smooth spheres (a) and circular cylinders (b); from (1), with
permission.
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vortices that remain attached to the cylinder’s aft; the wake is laminar and
steady, but starts oscillating far downstream for Re >40.

� 47< Re <100: Although the vortex pair remains attached, the wake be-
comes unstable rapidly and forms a series of alternating laminar vortices
(Karman vortex street).

� 100< Re <180: The vortices behind the cylinder are no longer attached, but
released alternately into the wake, forming a vortex street from the start,
but which remains laminar far downstream of the cylinder.

� 180 < Re <360: At some downstream distance, the vortex street undergoes
a laminar-to-turbulent transition.

� 360< Re <5000: The shear layer between the free stream and the retarded
fluid becomes unstable from the start and soon afterwards turbulent; in this
range, the drag coefficient becomes nearly independent of Reynolds number
and the pressure on the downstream side of the cylinder is almost constant,
roughly equal to the low value at the point of separation; this results in a
considerable imbalance of pressure between the upstream and downstream
surfaces and make form drag dominant over skin friction.

� 5� 103 < Re < 2� 105: This is called the subcritical regime; in this regime,
laminar boundary layers form on the two sides of the cylinder and separate
alternately at about y& 80–858; the shed vortices are turbulent from the
start and the wake is quite wide; the drag coefficient is near 1 and insensi-
tive to Re.

� 2� 105 < Re < 3� 106: This is the critical regime, in which the boundary
layer separates as in the subcritical regime, but then becomes turbulent;
the higher mixing due to turbulence brings faster fluid near the wall, which
can resist adverse pressure forces better and reattaches to the wall; the tur-
bulent boundary layer remains attached until �y& 110–1208, where it
separates and forms vortices; in this range, the wake is much narrower
than in the previous one and the form drag decreases dramatically, as the

Fig. 6. Sketches of vortex patterns behind a circular cylinder with its axis perpendicular
to a stream.
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wall pressure in the range 908 y 1208 recovers to higher values; as a result,
the drag coefficient undergoes a sudden downward step change; the wake is
quite disorganized and the vortex street is not evident; the laminar-to-
turbulent transition in the boundary layer, and associated drag reduction,
can be triggered at lower Reynolds numbers by roughening the surface with
sand grains or a trip wire.

� 3� 106 Re: This is the supercritical regime, in which the boundary layer is
fully turbulent along the cylinder’s surface and separates at � y& 110–
1208, as in the previous regime; although the wake is still narrow, addi-
tional skin friction due to turbulence increases the drag coefficient to
near its subcritical value of �1; the vortex street is once more well defined.

The periodic vortex shedding produces lateral forces of the same period
on the cylinder. Should the cylinder be weakly supported and have a natural
frequency close to the shedding frequency, it would oscillate strongly in concert
with the vortex street, a phenomenon known as vortex induced vibration. Flow
induced vibration is much more likely to happen for elongated (eg, cylinders)
rather than compact (eg, spheres) bodies. Such behavior is responsible for the
singing of power lines, failure of shell-and-tube heat exchangers, the oscillation
of tall smokestacks, and, most spectacularly, for the collapse in 1940 of the newly
built Tacoma Narrows suspension bridge, in Washington state, under the influ-
ence of a steady 65-km/h wind. The vortex shedding frequency f is usually
presented in dimensionless form, as the Strouhal number

St ¼ fD

V
ð57Þ

whereD is a frontal dimension of the object. The Strouhal number depends on the
shape of the object and the Reynolds number, tending to a near constant value at
large Reynolds numbers for object shapes with sharp edges, which do not have a
critical regime. For bodies with a critical regime, St fluctuates dramatically when
the Reynolds number is within this regime. The variation of Strouhal number for
circular cylinders is shown if Figure 7. It can be seen that over a wide range of
Reynolds numbers, St& 0.20	 0.1.

Besides the drag force, the character of the flow also affects the heat and
mass transfer to the surface. At low Reynolds numbers, the thinner boundary
layer on the upstream face of the cylinder exhibits a higher heat-transfer coeffi-
cient than does the thickened layer on the downstream face. Despite the onset of
separated flow and the large energy losses in the wake, the upstream coefficient
remains larger until the Reynolds number reaches �5� 104. Above this point the
washing of the surface by the shedding eddies makes the downstream coefficient
larger. The point of maximum heat transfer occurs at the forward stagnation
point (y¼ 08, in Fig. 4) for Re <5� 104, at the rear stagnation point (y¼ 1808)
for 5� 104 < Re <2� 105, and at an intermediate location (y& 1158) for Re
>2� 105. Minimum heat transfer occurs near the point of separation.

When the contour of the immersed object is rounded, as in the case of cir-
cular cylinders, spheres and the like, separation points are free to move along the
surface, depending on the Reynolds number, the surface roughness and the flow
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disturbances. When, however, the object has sharp corners or edges, as in the
case of a rectangular cylinder, separation always occurs at these edges and no
critical regime is observed. In most technological processes, flow separation is
undesirable and effort is made to eliminate or reduce it by redesigning the object
shape (eg, streamlining), applying suction or tangential fluid injection, or using
various control devices. Drag coefficients and Strouhal numbers for a variety of
body shapes can be found in reference (6).

3.4. Free Shear Flows. These are flows which are confined not by solid
boundaries, but by fluid at a different speed. Simple shear flows include jets, in
which a stream is injected into slower surroundings, wakes, in which the stream
has been retarded by the presence of an upstream object, mixing layers, which
are the regions between two parallel streams of different speeds, and plumes,
which are fluid columns rising due to buoyancy. Jets are used industrially to per-
form many mixing operations ranging from gradual mixing of tanks to the rapid
mixing needed in chemical reactors or flames. Mixing in turbulent wakes is
important in the disposal of wastes at sea and in the dispersion of potential atmo-
spheric pollutants downwind of structures. Much interest in plumes is centered
around the behavior of gases emitted from smokestacks into the atmosphere. The
flow field in a jet, wake or plume may be regarded as a shear layer that grows by
entraining fluid from its surroundings. Free shear flows may be either laminar or
turbulent, although most important applications involve turbulent ones, which
begin to form when the Reynolds number, based on a velocity difference and a
characteristic transverse width, exceeds a critical value, typically a few hundred.
Near their physical origin, turbulent free shear flows have an entry region (see
example in Fig. 8), in which the flow patterns develop and are strongly affected

Fig. 7. Variation of Strouhal number with Reynolds number for a circular cylinder with
its axis perpendicular to a stream [adapted from (23)].
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by the starting conditions. Several initial widths downstream from the origin, a
fully developed region forms, where the velocity profiles, made dimensionless by
the maximum velocity difference D Umax and plotted vs. the transverse distance
normalized by the local characteristic width w, are universal and independent of
the starting conditions (self-similar profiles). Simplified analysis, mostly con-
firmed experimentally, predicts that these two characteristic scales evolve with
downstream distance x from the origin following power laws, as

�Umax / x�m ð58Þ
w / xn ð59Þ

The exponents in these laws have been summarized in the table below (19,24).

Mass and heat transport within the shear flow follow the same general
pattern as does momentum transport. For gases, it is found experimentally
that the thermal or concentration jet spreads somewhat faster and decays
more rapidly than does the momentum jet. All can be described by the turbulent
equations of motion and useful results can be obtained by using eddy diffusiv-
ities, which are nearly constant across the jet but decrease with downstream dis-
tance. The concentration jet, because of its association with a particular chemical

Entry region Transition
region

Similarity
region

Entrained
flow

Outer
boundary

Inner
boundary

Fig. 8. Sketch of a jet, showing the entry, transition and similarity regions.

Flow type m n

two-dimensional wakes 1/2 1/2
axisymmetric wakes 2/3 1/3
two-dimensional jets in still fluid 1/2 1
axisymmetric jets in still fluid 1 1
two-dimensional mixing layers 0 1
two-dimensional plumes 0 1
axisymmetric plumes 1/3 1
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species, remains identifiable longest, even though the jet velocity may be indis-
tinguishable from that of the surrounding fluid. An important example involving
concentration of pollutants is the plume released from a smokestack or vent.
Except right at the source, the behavior of the plume is dominated by its buoy-
ancy and/or the turbulence of the fluid into which it is injected. Figure 9
describes several of the plume patterns that can be obtained as they are affected
by the vertical temperature variation in the surrounding air (25). The quanti-
tative description of the dispersion of such plumes, especially their ground-
level concentration, is still imperfectly developed and one must usually resort
to empirical correlations. Where the effects of buoyancy are subordinate to
the effects of wind velocity, useful results for dispersion over complex terrain
or around structures can be obtained by wind tunnel experiments using scale
models.

Most of the remarks above refer to unconfined or free flows. Many indus-
trial applications involve the use of confined jets. It is customary to consider a
jet confined when the ratio of the confinement radius to the source radius lies
in the range 4–100. Below a ratio of 2, the jet does not develop its similarity pro-
file before striking the wall, whereas above a ratio of 100 the jet itself may
usually be considered free. Under certain conditions, flow in confined jets is
accompanied by the existence of a recirculation zone, which significantly affects

H
ei

gh
t

Temperature

(a)

(b)

(c)

(d)

Fig. 9. Characteristic plume patterns: (a) fanning; (b) fumigation; (c) lofting; and
(d) looping; dashed lines represent the adiabatic temperature and solid lines the actual
air temperature. Courtesy of Scientific American (27).
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the jet behavior by returning material upstream (26). This recirculation can be
particularly important in combustion processes.

3.5. Compressible Flows. The flow of easily compressible fluids, ie,
gases, exhibits features not evident in the flow of substantially incompressible
fluid, ie, liquids. These differences arise because of the ease with which gas velo-
cities can be brought to or beyond the speed of sound and the substantial rever-
sible exchange possible between kinetic energy and internal energy. The Mach
number, the ratio of the gas velocity to the local speed of sound, plays a central
role in describing such flows.

Consider the converging-diverging nozzle described in Figure 10, and for
simplicity consider only isentropic (ie, frictionless and adiabatic), one-dimen-
sional flow. When the pressures in the upstream and downstream reservoirs
are equal, no flow occurs, A. When the pressure in the downstream reservoir is
reduced, flow commences. In the converging section, velocity increases with dis-
tance, and both pressure and temperature fall in accordance with the overall
energy balance and the equation of state. In the diverging section, the fluid
slows and some pressure is recovered, B. As the downstream pressure is reduced
further, the behavior remains qualitatively the same until a point is reached at
which the velocity in the nozzle throat equals the local speed of sound. At this
point it is found that there are two possible paths that the downstream flow
can follow and remain thermodynamically reversible. One corresponds to recom-
pression and deceleration to subsonic flow C, the other to further expansion and
acceleration to supersonic flow G. Operation at an intermediate pressure in the

Pressure

Subsonic

Supersonic

Flow

A

B

C

D

E

F

G

H

Fig. 10. Pressure variation in compressible flow through a converging-diverging nozzle.
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reservoir D is possible only by sacrificing thermodynamic reversibility. Under
these circumstances, a standing normal shock front is set up at some point in
the diverging section. At this front, pressure, temperature, and entropy rise,
and velocity drops abruptly over a distance of a few molecular mean-free
paths. Flow changes from supersonic upstream of the shock to subsonic down-
stream. The relationship between the two conditions is established by conserva-
tion of energy and by conservation of momentum across the shock front.

Further reductions in reservoir pressure move the shock front downstream
until it reaches the outlet of the nozzle E. If the reservoir pressure is reduced
further, the shock front is displaced to the end of the tube, and is replaced by
an oblique shock, F, continuous flow without pressure change, G, or an expansion
fan, H, at the tube exit. Flow is now thermodynamically reversible all the way to
the tube exit and is supersonic in the tube. In practice, frictional losses limit the
length of the tube in which supersonic flow can be obtained to no more than
100 pipe diameters.

While the behavior downstream of the throat is displaying these complex-
ities, nothing is changing upstream. Once the velocity at the throat becomes
sonic, no downstream perturbation, eg, a sound wave, can be propagated
upstream. Throughout the change from C to H the mass rate of flow remains con-
stant at the value first established at C. An increase in flow can be accomplished
only by raising the upstream pressure. In the absence of any temperature change
in the upstream reservoir, the increase in flow results solely from a change in
fluid density, not from a higher velocity in the throat. This isolation of flow
rate from downstream effects can be employed to meter gases through orifices
or nozzles at a constant rate, irrespective of downstream fluctuations. For
ideal gases and relatively low upstream velocities, sonic flow through the throat
is established whenever the ratio of upstream to downstream pressure across the
constriction exceeds the quantity

� þ 1

2

� � �
��1

ð60Þ

where g is the ratio of specific heats for the gas; for air, g¼ 1.41.
Phenomena analogous to shock waves in gases can occur in open-channel

flow of liquids. The Froude number also represents the ratio of fluid velocity to
the velocity of a small surface wave, and plays the same role in open-channel flow
as the Mach number does in compressible flow. Thus, liquid flowing under a
sluice gate is often discharged at a shallow depth at high velocity, corresponding
to a Froude number greater than unity. At a distance downstream, the liquid is
observed to undergo a hydraulic jump to a greater depth at a slower velocity, for
which the Froude number is less than unity. The decreased liquid momentum
appears as greater pressure (depth). In contrast to the normal shock, a great
deal of turbulence is generated at the jump because of the sudden lateral expan-
sion, and energy is dissipated through friction.

3.6. Flow Instability and Secondary Flows. In many flow situations
it is found that a mathematically valid solution to the Navier-Stokes equations is
closely verified by experiment over some ranges of the variables, but when the
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variables are changed new flow patterns that are not in keeping with that solu-
tion are observed. The change is often rather sudden, and may involve a change
from an unstable laminar solution to another, stable, laminar one or may involve
transition to turbulence. Such behavior occurs because solutions to the Navier-
Stokes equations are generally not unique. When more than one solution exists,
it is possible to observe one flow pattern under one set of circumstances and a
different pattern under another. At the present stage of development of fluid
mechanics, an experiment must be performed to determine whether a given solu-
tion applies. In some cases, however, it is possible to determine the criteria by
which one flow pattern becomes unstable in favor of another by analyzing the
equations of motion. This analysis is the topic of a field called hydrodynamic
stability. The simplest mathematical technique used in stability analysis starts
from a known solution to the equations and then uses linearized versions of
related equations to determine whether a small perturbation superimposed on
this solution grows or decays as time passes. More advanced, nonlinear, stability
analysis methods have also been developed, capable to determine not only the
onset of instability, but also characteristics of the new flow patterns (eg, the
wavelength of a periodic solution).

Fluids in Motion. Many of the instabilities associated with fluids in
motion are of the shear-flow type, in which the velocity varies principally in a
direction perpendicular to the flow direction. Examples include pipe flow, bound-
ary layer flow, jet flow, and wake flow. At low Reynolds number, such flows have
laminar solutions, which can be found by solving the Navier Stokes equations. As
the Reynolds number increases above a certain value, which is different for each
flow configuration, these solutions no longer describe the flow, which becomes
unstable and changes possibly to another laminar state but eventually from
laminar to turbulent. In boundary layer flows over smooth plane walls with
extremely low external disturbances, the instability, usually referred to as
Tollmien-Schlichting instability, occurs in essentially four steps (28): first,
small two-dimensional waves form and are linearly amplified; second, the two-
dimensional waves develop into finite three-dimensional waves and are amplified
by nonlinear interactions; third, a turbulent spot forms at some localized point in
the flow; and, finally, the turbulent spot propagates until the spot fills the entire
flow field with turbulence. While at low Reynolds numbers viscosity damps out
the instability, at high Reynolds numbers viscosity provides the destabilizing
mechanism. Stability analysis cannot predict transition for pipe flow, as it pre-
dicts that laminar flow in pipes is stable at all values of the Reynolds number.
Experimentally, the laminar-turbulent transition is found to occur at a Reynolds
number of �2100, although by careful design of the experiment it can be delayed
to Re as high as 40,000, or even higher.

In free shear flows, such as jets and wakes, there occurs another type of
instability, called Kelvin-Helmholtz instability. This instability may be illu-
strated by considering the development of a small disturbance in the flow situa-
tion given in Figure 11. Suppose that a small disturbance causes a slight
waviness of the boundary between the two flows. The fluid on the convex sides
of each flow moves slightly faster and that on the concave sides moves slightly
slower. According to the Bernoulli equation, this disturbance decreases the
pressure on the convex sides of each flow, and thus the initial disturbance is
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amplified. Kelvin-Helmholtz instability is also observed in horizontal concurrent
flows of stratified immiscible fluids (Fig. 12). Raising of a wave at the interface
forces the upper fluid to increase in velocity and drop in pressure as it passes the
wave. If the pressure decrease is large enough, it overcomes the increase in
potential associated with the raising of the wave and the disturbance grows.

An instability involving transition from one laminar flow pattern to another,
called Taylor instability, occurs in the flow between coaxial cylinders in relative
rotation with respect to each other. When the inner cylinder is rotated at an
angular velocity below a critical value, motion is purely circumferential, called
circular Couette flow. Above this value, however, centrifugal force destabilizes
the flow and a series of laminar, cellular vortices known as Taylor cells are super-
imposed on the main flow (Fig. 13). The pattern of cells depends on the geometry
and whether the outer cylinder is stationary or also rotating. As the angular
velocity is increased, the cells become wavy and then irregular. At still higher
velocities the cells break up and the flow becomes turbulent. If only the
outer cylinder is rotated, Taylor cells do not form, and this arrangement is
customarily used in Couette-type viscometers so as to maximize their useful
ranges of shear rates.

When a fluid of low viscosity is used to displace a fluid of higher viscosity
from a porous medium or a pipe, the displacement can become unstable by a pro-
cess known as fingering. Small fingers of the low viscosity fluid, once formed,
become regions of lower pressure drop. The displacing fluid flows preferentially

C

D

Fluid A

Flow direction

Flow direction

Fluid B

Convex side of fluid A

Concave side of fluid B

Fig. 11. Sketch of Kelvin-Helmholtz instability, where C, the convex side of fluid A, is at
a lower pressure than D, the concave side of fluid B.

Fig. 12. Shear instability in stably stratified fluid; lower denser fluid is dyed. Courtesy of
Cambridge University Press (29).
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into these fingers which grow and ultimately reach the outlet, leaving a portion
of the viscous fluid undisplaced. Such displacements are widely practiced to
increase the productivities of oil fields, and much effort is devoted to minimizing
fingering by proper adjustment of the physical and chemical properties of the dis-
placing medium, as well as of the rate of displacement.

Fluids at Rest. Fluids at rest may be set into motion by impressing upon
them gradients in body or surface forces. Benard instability refers to the forma-
tion of convection cells within a fluid as a result of the action of a gravitational
field on density differences induced by a temperature gradient in the fluid. Such
behavior is observed, eg, when fluid is confined between two horizontal plates of
which the lower one is heated. The heated fluid on the bottom expands, resulting
in an unstable density gradient and providing a driving force to redistribute the
fluid. Redistribution is inhibited by viscosity, which slows the flow, and by ther-
mal conductivity, which tends to even out the temperature differences. The onset
of instability is described by a critical Rayleigh number Ra (see the section
Dimensional Analysis, Similarity and Modeling), based on the distance between
the two plates. Hot fluid rises on one side and cold fluid falls on the other side of
the cell. The rising fluid cools down as it nears the top, and the falling fluid
warms up as it nears the bottom, thus maintaining a steady circulation.

Cellular motions may also arise from gradients in surface tension caused by
variations in temperature or concentration. This behavior is commonly referred
to as Marangoni instability. To illustrate this, consider a solution from which a
volatile solute is evaporating and suppose the surface tension of the solution
decreases as the concentration of solute increases. Because the solute is evapor-
ating, the surface has a lower concentration of solute than the bulk. If a small
disturbance occurs and causes a spot of high solute concentration (low surface

Ω2 Ω1

Fig. 13. Flow pattern in rotating Couette flow where �1 and �2 represent the outer and
inner rotational speeds. Courtesy of Cambridge University Press (30).
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tension) to appear, this spot spreads. Spreading is a result of the attempt by the
interface to minimize its free energy by expansion of regions of low surface ten-
sion and contraction of those of high surface tension. The local spreading is
accompanied by movement of fluid from the bulk to fill the spreading spot.
Because the new fluid has lower surface tension too, the original disturbance
is amplified and convection cells are established. In some cases, the driving
force is so strong that the surface undergoes violent twitching with a large
increase in the overall mass-transfer rate. Such motion is commonly termed
interfacial turbulence. If the direction of mass transfer is reversed, disturbances
usually are not amplified and the surface remains quiescent. This effect is
responsible for the occasionally observed large differences in mass-transfer
rates for absorption and desorption in otherwise the same system. The transfer
of acetic acid between water and carbon tetrachloride is a classic example.
Circulation of fluid is promoted by surface tension gradients but inhibited
by viscosity, which slows the flow, and by molecular diffusion, which tends to
even out the concentration differences. The onset of instability is described by a
critical Marangoni number Ma (see the section Dimensional Analysis, Similarity
and Modeling), which is analogous to the Rayleigh number. Linear stability ana-
lysis has been successfully applied to derive the critical Marangoni number for
several situations.

Surface tension is also responsible for the varicose or Rayleigh breakup of
liquid strands into droplets. By virtue of surface tension the pressure within a
non-planar strand would be different from that in the ambient gas by the
amount:

�P ¼ �
1

R1
þ 1

R2

� �
ð61Þ

where R1 and R2 are the principal radii of curvature of the interface. A small
reduction in the radius results in a locally higher pressure than in the rest of
the strand, causing liquid to flow away from that region, reducing the radius
still further and making the thread unstable. Rayleigh analyzed this phenom-
enon for a low velocity, inviscid, cylindrical jet. He determined that one wave-
length of disturbance grows more rapidly than all others and thus, in the
absence of forced oscillations, determines the drop diameter. For an inviscid
fluid this is about twice the strand diameter. At higher flows, a jet undergoes sin-
uous breakup in which the entire strand oscillates like a vibrating string. At still
higher rates, as in commercial swirl atomizing nozzles, the liquid exits as a sheet
that undergoes Kelvin-Helmholtz breakup into thread-like rings, which in turn
disintegrate further, via Rayleigh instability, into fine droplets. The drop size
produced is a function primarily of nozzle diameter D, fluid velocity V, and liquid
properties rl,ml. One widely used empirical correlation (31) yields the average
(Sauter) droplet diameter as

dp;av / D0:65V�0:55��0:35
l �0:2�0:15l ð62Þ

Secondary Flows. In many cases, a cursory examination of the flow pat-
tern might indicate a rather simple type of flow with a high degree of symmetry,
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whereas in fact the flow realized is more complex. In the flow around a bend, eg,
one might imagine that the individual streamlines simply follow the general
course of the curvature of the pipe; in fact they do not. Instead, a pattern of sec-
ondary flow develops that is superimposed on the main flow so that the stream-
lines are actually helical. The choice is somewhat arbitrary as to which flow to
call main and which to call secondary. Adopting the convention that the main
flow is parallel to the tube axis, then at the axis the secondary flow is directed
outward toward the section of pipe having the weakest curvature, returning
inward along the pipe wall. This type of secondary flow is a consequence of the
inertia of the fluid. It is most obvious at low Reynolds numbers, but is also
significant in turbulent flow. By improving the lateral transport of momentum
it postpones the transition from laminar to turbulent flow. Even relatively
small curvatures can have a significant effect as is evidenced by the empirical
correlation for helical tubes (D is the tube diameter and Dhel is the diameter of
the helix):

Retransition � 2100 1þ 12

ffiffiffiffiffiffiffiffiffi
D

Dhel

s !
ð63Þ

Secondary flows also occur in channels that have polygonal cross-sectional
shapes, but are otherwise straight. In these cases the secondary flows are direc-
ted outward into the corners and return along the walls. Such secondary flows
are associated with gradients in turbulent stresses and only occur in turbulent
flows. Many other types of secondary flows have been observed, when the main
mechanism generating an axial flow finds competition in a secondary mechan-
ism, which tends to generate transverse components.

3.7. Flow in Porous Media. Flow of fluids through fixed beds of solids
occurs in situations as diverse as oil-field reservoirs, catalyst beds and filters,
and absorption towers (2). The complex interconnected pore structure of such
systems makes it necessary to use simplified models to make practical quantita-
tive predictions. An important parameter is the porosity or void fraction e,
defined as the average fraction of the cross-section that is not occupied by the
solid. One of the more successful treatments of single-phase pressure drop
through such systems employs the results for flow through tubes, using average
velocities and tube diameters. The average velocity through the pores Vl is called
the interstitial velocity Vl, while the apparent velocity based on the entire cross-
section VS is called the superficial velocity. The two are related as

Vl ¼ VS

"
ð64Þ

A hydraulic diameter Dh for a porous medium can be defined as twice the ratio of
the volume open to the flow and the wetted surface. For porous media with sphe-
rical particles of diameter dp,

Dh ¼ "

1� "

dp

6
ð65Þ
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Then, one may define a Reynolds number for flow through a porous medium as

Repor ¼ �VSdp

�ð1� "Þ ð66Þ

Pressure losses in flow through a porous medium are represented in dimension-
less form by the friction factor

fpor ¼ "3

1� "

1

�V2
S

� @P

@x

� �
ð67Þ

Empirical results for pressure losses through pipes randomly packed by spheri-
cal particles throughout the Reynolds number range are described by the Ergun
relationship

fpor � 1:75þ 150

Repor
ð68Þ

obtained by interpolation between the low- Repor, laminar flow, Blake-Kozeny
relationship

fpor � 150

Repor
; Repor< 10 ð69Þ

and the high- Repor, turbulent flow, Burke-Plummer relationship

fpor � 1:75; Repor > 1000 ð70Þ

For nonspherical particles, equivalent spherical diameters are employed
and additional corrections for shape are introduced. When considering flow of
water or oil through soil and rocks, it is customary to introduce an empirical
permeability k and compute pressure losses by Darcy’s law (z is the vertical
elevation)

� @P

@x
� �g

@z

@x
¼ �

VS

�
ð71Þ

When two phases are present, the situation is quite complex, especially in beds of
fine solids where interfacial forces can be significant. In coarse beds, eg, packed
towers, the effects are often correlated empirically in terms of pressure drops for
the single phases taken individually.

3.8. Non-Newtonian Fluids. For many fluids the Newtonian constitutive
relation involving only a single, constant viscosity is inapplicable (2,4,32,33).
Either stress depends in a more complex way on strain, or variables other
than the instantaneous rate of strain must be taken into account. Such fluids
are known collectively as non-Newtonian and are usually subdivided further on
the basis of behavior in simple shear flow, ie, flow between sliding planes or, to
a good approximation, between two mutually rotating cylinders. Figure 14
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illustrates the behavior of several types of the generalized Newtonian fluid. This
simple generalization uses the Navier-Stokes equations but takes viscosity to
depend in some way on the rate of strain, as described by the constitutive rela-
tionship of the fluid.

The behavior of a large class of non-Newtonian fluids can be represented
by the power law

�yx ¼ K
@U

@y

� �n

ð72Þ

where K is the consistency index and n is the behavior index, both of which are
empirical constants. Fluids with n <1, called pseudoplastic, are the most com-
monly encountered non-Newtonian fluids. Examples are polymeric solutions,
some polymer melts, and suspensions of paper pulps. Their apparent viscosity,
defined as �yx=ð@U@y Þ, drops with increased rate of strain. Fluids with n >1, called
dilatant, have apparent viscosities that increase with increased rate of strain.
Dilatancy is observed in highly concentrated suspensions of very small particles
such as titanium oxide in a sucrose solution.

Another common class of non-Newtonian fluids is the Bingham fluids,
which have a linear constitutive relationship, similar to Newtonian fluids, but
have a nonzero intercept termed the yield stress:

�yx ¼ �yield þ �o
@U

@y
ð73Þ

The coefficient mo is termed the modulus of rigidity. The viscosities of thixotropic
fluids fall with time when subjected to a constant rate of strain, but recover upon

Rate of strain, ∂u/∂y
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Fig. 14. Fluid behavior in simple shear flow where A is Bingham; B, pseudoplastic;
C, Newtonian; and D, dilatant fluid.
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standing. This behavior is associated with the reversible breakdown of structures
within the fluid, which are gradually reestablished upon cessation of shear. The
smooth spreading of paint following the intense shear of a brush or spray is an
example of thixotropic behavior. When viscosity rises with time at constant rate
of strain, the fluid is termed rheopectic. This behavior is much less common but
is found in some clay suspensions, gypsum suspensions, and certain soils.

When these relatively simple fluids are conveyed in laminar flow in pipes,
the behaviors can be deduced directly and quantitatively from constitutive rela-
tions and the assumption of linear variation of shear stress with radius. Pseudo-
plastic fluids display lower viscosities in the high shear region on the wall than at
the pipe axis. Their velocity profiles are steeper at the wall and flatter at the axis
than the parabolic shape developed by Newtonian fluids. Dilatant fluids show
opposite behavior, tending to freeze at the wall and finger along the axis.
Bingham fluids show no velocity gradient up to the radius at which the yield
stress is reached, giving the impression of a solid core of material moving
along the axis. Pipelines conveying thixotropic and rheopectic fluids are usually
designed on a most viscous basis. For thixotropic fluids, this corresponds to visco-
sity at time zero, but for rheopectic fluids the viscosity after extended shear is
used.

The pressure drop accompanying pipe flow of non-Newtonian fluids can be
described in terms of a generalized Reynolds number. For power-law types, this
takes the form:

Repl ¼ 8�V2�nDn

K½2ð3nþ 1Þ=n
n ð74Þ

The transition from laminar to turbulent flow occurs at Reynolds numbers vary-
ing from �2000 for n �1 to �5000 for n¼ 0.2. In the laminar regime, the friction
factor, as defined by equation 50, is related to Repl in a fashion identical to that
for Newtonian fluids, ie,

f ¼ 64

Repl
ð75Þ

In the turbulent regime, the friction factor increases significantly with increas-
ing values of n. Its variation is shown in Figure 15.

For Bingham fluids, the corresponding Reynolds number is defined as

ReBin ¼ �VD

�o
ð76Þ

The yield stress is presented in dimensionless form as the Hedstrom number

He ¼ �yieldD
2�

�2o
ð77Þ

this parameter is the product of the Bingham number (ie, the ratio of yield stress
and viscous stress) and the Reynolds number. Figure 16 shows the variation of
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Fig. 15. Friction factor variation for power-law-type fluids [adapted from (2)].

Fig. 16. Friction factor variation for Bingham fluids; notice that f/4 is plotted instead of f
[adapted from (2)].
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the friction factor for Bingham fluids with different values of He. The Reynolds
number for transition to turbulence can be found from the same figure as the
intersection of the line for turbulent flow in Newtonian fluids and the corre-
sponding constant-He line.

In configurations more complex than pipes, eg, for flow around bodies or
through nozzles, additional shearing stresses and velocity gradients must be
accounted for. More general equations for some simple fluids in laminar flow
are described in Ref. 4.

Many industrially important fluids cannot be described in simple terms.
Viscoelastic fluids are prominent offenders. These fluids exhibit memory, flowing
when subjected to a stress, but recovering part of their deformation when the
stress is removed. Polymer melts and flour dough are typical examples. Both
the shear stresses and the normal stresses depend on the history of the fluid.
Even the simplest constitutive equations are complex, as exemplified by the
Oldroyd expression for shear stress at low shear rates g�:

� þ �1
d�

dt
¼ �

d � �
dt

þ �2
d2 � �
dt2

� �
ð78Þ

The relaxation times l1 and l2 describe the times required to relieve stress on the
cessation of strain and to relieve strain on the cessation of stress, respectively.
The full Oldroyd tensor requires knowledge of eight material properties.

The development of significant normal stresses in such fluids can lead to
bizarre behaviors when the fluids are deformed. Stirred viscoelastic fluids can
move radially inward and climb the stirring shaft (the Weissenberg effect), if
the inward-directed normal stresses accompanying shear are greater than the
centrifugal forces developed by the stirring. When viscoelastic polymer melts
are extruded through dies, they swell, recovering in part the lateral dimensions
they possessed upstream of the die. At some critical rate the polymer undergoes
melt fracture. Stress is relieved in an unsymmetrical manner and the extruded
rod takes on a screw-like form. As the flow increases, additional modes of
instability appear and the rod takes on progressively more complex shapes.

3.9. Two-Phase Flows. Gas-Liquid Flows. When two or more fluids
flow together, a much greater range of phenomena occurs as compared to flow
of a single phase. In a conduit many of the technically significant phenomena
have to do with the positions assumed by the phase boundaries, and these are
governed by the flow conditions rather than by the walls of the conduit. In addi-
tion to the densities and viscosities, surface properties can be important. Meth-
ods for quantitative calculation for gas–liquid flow are poorly developed in
comparison to those for single-phase flow. Consider, for example, pressure drop
for fully developed, steady-state, incompressible flow in smooth conduits. For
single-phase flow, dimensional analysis shows that only two dimensionless num-
bers are involved, the friction factor and the Reynolds number, and a set of
experiments in which only two measurable quantities are varied suffices to
establish the desired empirical correlation. For fully developed gas–liquid flow
in horizontal pipes alone, there are at least six such groups and a six-dimensional
space must be mapped. This has not yet been fully accomplished although thou-
sands of experimental measurements have been made. The methods available
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run the gamut from empirical correlations only weakly based, if at all, on an
understanding of the phenomena, to correlations based on conceptual models
that use simplifying relations connecting the variables of the multidimensional
problem. Even with the best correlations, however, errors of a factor of two
are not uncommon. Much of the data on which available correlations are
based are obtained in small-diameter (ie, <100 mm) pipes using air and
water. There is still much uncertainty as to how or even whether such data
can be extrapolated to large pipes conveying fluids having significantly different
properties.

Despite these difficulties, many useful calculations can be made, particu-
larly when the effects of changes in an already existing operation are of interest.
All of these calculations depend on an accurate picture of the flow regime, used to
denote the significant configurational characteristics of the flow, eg, unidirec-
tional, recirculating, steady, unsteady, liquid-dispersed, gas-dispersed, etc. For
illustration, consider the simultaneous flow of air and water at various velocities
in a 25-mm horizontal pipe. It is desirable to know such things as which phase is
continuous, the degree of dispersion or atomization, and the presence or absence
of flow surges. At low velocities, both phases are continuous and flow smoothly
and the flow is stratified, as sketched in the lower left-hand corner of Figure 17.
As either the liquid-flow rate or gas-flow rate is raised, the flow becomes unstable
by a Kelvin-Helmholtz instability. This causes waves to rise at the phase inter-
face, producing wave-stratified flow. With further increase in liquid-flow rate,
the waves grow in amplitude, and at some flow rate touch the upper wall of
the pipe, destroying the continuity of the gas phase. This is plug flow or slug
flow, the former term connoting the more gentle action in which the gas bubble
moves forward without intense agitation, and the latter one expressing the more
violent action observed at higher gas-flow rates. As liquid-flow rate is raised still
further, the gas plugs break up into rather small bubbles. The flow may then be
described as bubble flow or froth flow, according to whether the gas volume frac-
tion is small or large, respectively.

If the gas-flow rate is increased, one eventually observes a phase transition
for the abovementioned regimes. Coalescence of the gas bubbles becomes impor-
tant and a regime with both continuous gas and liquid phases is reestablished,
this time as a gas-filled core surrounded by a predominantly liquid annular film.
Under these conditions, there is usually some gas dispersed as bubbles in the
liquid and some liquid dispersed as droplets in the gas. The flow is then annular.
Various qualifying adjectives may be added to further characterize this regime.
Thus, there are semiannular, pulsing annular, and annular mist regimes. Over a
wide variety of flow rates, the annular liquid film covers the entire pipe wall. For
very low liquid-flow rates, however, there may be insufficient liquid to wet the
entire surface, giving rise to rivulet flow.

At very high flow rates, phenomena occur that are equivalent to the sonic
flow observed with gases. This is illustrated in Figure 17 by the envelope labeled
choked flow. Without special effort, it is impossible to produce velocities in a pipe
at rates higher than indicated by the envelope. It is especially noteworthy that
the limiting gas velocity can be very low provided the liquid rate is high. Realiza-
tion of this fact has often come as a surprise to a designer who has calculated
higher velocities in some pipes.
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In inclined or vertical pipes, the flow regimes are similar to those described
for horizontal pipes when both gas- and liquid-flow rates are high. At lower flow
rates, the effects of gravity are important and the regimes of flow are quite dif-
ferent. For liquid velocities near 0.3 m/s and gas velocities near 1.5 m/s, piston or
vertical slug flow is observed (Fig. 18). Large gas bubbles, having approximately
spherical top surfaces, bridge the pipe. The calculation of the rate of rise of such
bubbles can be made fairly accurately by assuming frictionless flow near the bub-
ble apex. The success of this rather simple calculation illustrates one of the
advantages of having a firm knowledge of flow regimes.

The upward flow of gas and liquid in a pipe is subject to an interesting and
potentially important instability. As gas flow increases, liquid holdup decreases
and frictional losses rise. At low gas velocity the decrease in liquid holdup and
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Fig. 17. Flow regimes for air–water in a 2.5-mm horizontal pipe where VSL is superficial
liquid velocity and VSG is superficial gas velocity. Courtesy of Shell Development Co.
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gravity head more than compensates for the increase in frictional losses. Thus,
an increase in gas velocity is accompanied by a decrease in pressure drop along
the pipe, which constitutes a potentially unstable situation if the flows of gas and
liquid are sensitive to the pressure drop in the pipe. Such a situation can arise in
a thermosyphon reboiler, which depends on the difference in density between the
liquid and a liquid–vapor mixture to produce circulation. The instability is man-
ifested as cyclic surging of the liquid flow entering the boiler and of the vapor
flow leaving it.

Atomization. A gas or liquid may be dispersed into another liquid by the
action of shearing or turbulent impact forces that are present in the flow field.
The steady-state drop size represents a balance between the fluid forces tending
to disrupt the drop and the forces of interfacial tension tending to oppose distor-
tion and breakup. When the flow field is laminar, the ability to disperse is
strongly affected by the ratio of viscosities of the two phases. Dispersion, in
the sense of droplet formation, does not occur when the viscosity of the dispersed
phase significantly exceeds that of the dispersing medium (34).

More commonly, atomization occurs under turbulent conditions. The
mechanism of atomization and its quantitative description are still incompletely
understood. It is possible that breakup occurs because of the impact forces
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Fig. 18. Flow regimes for air–water in a 25-mm vertical pipe where VSL is superficial
liquid velocity and VSG is superficial gas velocity. Courtesy of Shell Development Co.
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exerted by the small, nearly isotropic turbulent eddies (35). The effects of these
eddies are measured by the local rate of energy dissipation, but because this
quantity is seldom known, correlations are often expressed in terms of average
energy dissipation per unit mass or volume. In fact, in most important situations,
breakup occurs in highly anisotropic regions, where the local energy dissipation
bears little relationship to the average and where nonturbulent mean shearing
stresses may be large. For example, in stirred tanks breakup occurs mostly in the
vortices shed from the turbine blades. In pipe flow it appears that, at least initi-
ally, breakup occurs close to the wall, quite likely as a result of mean flow shear.
Drop size is related to velocity gradient and not to average energy dissipation.
Under these circumstances, the most practical approach is to employ empirical
correlations derived for the geometries and residence times of interest.

Drop or bubble sizes are also strongly affected by the tendency of the drops
or bubbles to coalesce once they enter regions of low turbulence or low mean
shear. When coalescence is rapid, as in dispersion of gas in pure liquids, average
bubble size seems to be determined by the average rate of energy dissipation and
is insensitive to how the energy is applied. Correlations obtained for one geome-
try can be applied with reasonable success to other geometries. In many liquid–
liquid systems where coalescence rates are lower, the drops made in the regions
of intense shear can persist throughout. In a stirred vessel, eg, these drops are
characteristic of conditions near the impeller and the same impeller operating at
the same speed in two vessels of different sizes gives about the same size drops,
despite the lower average energy dissipation in the larger vessel. In the extreme
case of no coalescence, eg, in emulsions stabilized by surface-active agents, drop
sizes are determined by the highest shear rates available. In a stirred vessel, this
results in a sensitivity of drop size only to tip speed and not to impeller shape or
energy input. In a practical situation the time needed to emulsify is as important
as ultimate drop size, and impellers providing reasonable circulation times are
required.

Flow Past Deformable Bodies. The flow of fluids past deformable sur-
faces is often important, eg, in flows of liquids containing gas bubbles or drops
of another liquid (36). Proper description of the flow must allow for both the
deformation of these bodies from their shapes in the absence of flow and for
the internal circulations that may be set up within the drops or bubbles in
response to the external flow. Deformability is related to the interfacial tension
and density difference between the phases; internal circulation is related to
the drop viscosity. One would have to consider the material properties of both
the continuous phase (indicated by the subscript ‘‘c’’) and the distributed phase
(indicated by the subscript ‘‘d’’). A proper description of the flow involves not only
the Reynolds number Re¼ rcVrelDd/md, but also other dimensionless groups,
including the viscosity ratio, md/mc, the Eötvos number Eö¼ g (rc–rd) D2

drop/s
and the Morton number Mo¼ gmc

4 (rc–rd)/rc
2s3.

Where surface-active agents are present, the notion of surface tension and
the description of the phenomena become more complex. As fluid flows past a cir-
culating drop (bubble), fresh surface is created continuously at the nose of the
drop. This fresh surface can have a different concentration of agent, hence a dif-
ferent surface tension, from the surface further downstream that was created
earlier. Neither of these values need equal the surface tension developed in a
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static, equilibrium situation. A proper description of the flow under these circum-
stances involves additional dimensionless groups related to the concentrations
and diffusivities of the surface-active agents.

Because of high buoyancy and frequently large size, gas bubbles rising in a
liquid can deviate greatly from spherical shapes. Figure 19 illustrates the beha-
vior observed. In pure liquids small bubbles rise faster than would be predicted
from the drag correlations developed for solid spheres, because internal circula-
tion permits a higher fluid velocity at the surface and less drag than for the

105

Spherical
cap

Skirted

Dimpled

Wobbly

–14

104

103

102

10

1

0.1

–12

–10

–8

–6

–4

–2

0

R
e

8
6

4
2

0.01 0.1 1 10 102 103

E

(b)

Log Mo

(a) 1 CM

Fig. 19. Shapes of drops and bubbles. (a) Bubbles rising in sparged tower system:
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corresponding solid. Very large bubbles rise much more slowly than do unde-
formed spheres of the same volume. This is caused by deformation to a shape
of large frontal area but small thickness. Very small bubbles obey Stokes law
for solid (immobile) surfaces. This behavior is reflected also in the mass-transfer
coefficients for such bubbles, which are lower than would be expected from the
correlations developed for larger, circulating bubbles.

4. Computational Fluid Dynamics

Analytical solutions of the equations of motion are known only for a small num-
ber of laminar and inviscid flows in fairly simple geometrical configurations sub-
jected to well defined boundary and/or initial conditions. The fact that the
majority of problems of practical interest are not amenable to such ‘‘exact’’ solu-
tions has motivated the development of powerful numerical algorithms for their
computation. The various methods of numerical solutions of fluid mechanical and
related equations are collectively known as computational fluid dynamics (CFD).
The field of computational fluid dynamics is moderately mature. A vast reper-
toire of techniques exists and solutions to many complex flows directly relevant
to industrial situations can be obtained. Also, a number of reliable CFD codes are
commercially available. Although at the research level and for large-scale indus-
trial computations the need for supercomputers or large clusters of parallel pro-
cessors remains keen, many engineering problems can be solved with acceptable
accuracy using personal computers. Future advances in computer speed, code
parallellization and new algorithm development promise further improvements
in CFD capabilities.

The start of all numerical procedures is the identification of appropriate
equations, usually partial differential equations, but also algebraic, ordinary
differential or integral, which describe the physical problem at hand. The conti-
nuity and momentum equations are the most common, sometimes supplemented
by the energy equation, constitutive relationships, empirical correlations and
models and equations describing additional physical phenomena in interaction
with the flow, such as scalar transport, chemical and biochemical reactions, phase
changes and electromagnetic fields and motion/deformation of solid boundaries
and interfaces. Appropriate boundary and initial conditions must be also speci-
fied and the set of equations and associated conditions must be known to consti-
tute a well-posed mathematical problem, namely, one that is solvable, at least
in principle. A counterexample presented earlier is the Reynolds equations for
turbulent flows, which contain more unknowns than the available number of
equations.

The next step is to convert the equations into forms that can be solved digi-
tally. This usually entails the discretization of both the differential equations and
the space–time domain of interest. The flow domain is divided into a network of
discrete elements and the pertinent differential equations are replaced by a set of
linear algebraic equations for the unknown dependent values at the discrete ele-
ments, rather than in continuous space. Time, if a factor, is discretized into time
steps. The set of algebraic equations is then solved using highly efficient numer-
ical algorithms to provide values of the dependent variables, such as velocity,
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pressure, temperature, etc, at the discrete elements and at the specified time
steps.

Among the techniques available for the discretization of the partial differ-
ential equation set, commonly used are finite-difference (FDM), finite-volume
(FVM), finite-element (FEM), and spectral methods. The finite-volume method
is the most widely used method in the CFD codes utilized by the process indus-
tries. In the FVM, each partial differential equation is replaced by a set of alge-
braic finite-difference equations obtained by integration over a fictitious control
volume surrounding the point of location of the relevant variable in the mesh
structure.

CFD has reached a level of development that it can produce reliable simu-
lations of many fluid mechanical problems of interest in chemical processes, par-
ticularly for laminar viscous flows. Even so, it still faces significant challenges,
which include the simulation of complex turbulent flows, flows interacting
with moving and deformable solid boundaries and free surfaces, multiphysics
and multiphase flows, and flows with phase change and chemical reactions.
Some of these difficulties are associated with an inadequate understanding
and modeling of the related processes, while others are entirely attributed to
speed and memory limitations of available computers. Reflecting the fact that
the majority of flows of technological interest are turbulent, significant effort
has been put into the development of turbulent flow numerical simulation meth-
ods. Such methods will be briefly discussed below.

Computation of Turbulent Flows. The time-dependent, three-dimen-
sional Navier-Stokes equations are generally considered adequate to represent
turbulent flows and so their solutions, which would be functions of location
and time, should be realistic (18,37). CFD analyses that produce such solutions
are called Direct Numerical Simulations (DNS) (38) and require the use of a
mesh and time step that are fine enough to resolve the smallest motions of dy-
namic significance (ie, comparable to the so called Kolmogorov microscale and
time scale, respectively). At the same time, the computational domain has to
be maintained large enough to encompass the large-scale features of the flow
and the integration time large enough for the solution to become insensitive to
the applied starting conditions. As the flow Reynolds number increases, however,
the fine structure of the turbulence becomes increasingly finer, thus requiring a
finer mesh for its simulation. As a result, DNS have only been performed success-
fully mainly on relatively low Reynolds number flows with relatively simple geo-
metrical boundaries, including, among others, homogeneous and isotropic
turbulence, boundary layers, channel flows, and isothermal and chemically
reacting mixing layers. As algorithms and computers improve, DNS will be
able to tackle a wider range of problems, but it is clear that full-scale simulations
of large technological systems, such as flying aircraft and turbomachinery, will
remain indefinitely beyond DNS capabilities. For the time being, DNS is recog-
nized for its significant contributions to our understanding of turbulence funda-
mentals, particularly the fine structure and mixing mechanisms of turbulence.

An alternative approach, far less computationally intensive than DNS, but
also based on the unsteady Navier-Stokes equations, is offered by Large Eddy
Simulations (LES) (39,40). The mesh in these simulations is fine enough to
describe the large scale motions and part of the activity in the intermediate,
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‘‘inertial’’ subrange, but too coarse to precisely resolve the finest motions of tur-
bulence, where most of the kinetic energy dissipation to heat takes place and
where mixing my molecular motions occurs. LES model the fine structure
through a subgrid scale model and incorporate this model into a set of spatially
filtered dynamic equations, which are then solved numerically. The simplest and
most popular subgrid scale model is the Smagorinsky model, which is based on
the eddy viscosity concept (see below), but more complex and versatile models
have also been suggested (41). LES have met with significant successes in simu-
lations of atmospheric and laboratory turbulence, particularly the identification
of coherent structures that are often responsible for large-scale transport and
mixing. Nevertheless, and despite early expectations, LES have not yet devel-
oped to an all-purpose numerical tool for flows of engineering interest.

Thus, the most economical and effective engineering analyses of turbulent
flows are still based on the earlier approach of developing closure schemes, called
turbulence models, allowing the solution of statistically averaged equations. This
approach is generally known as RANS (Reynolds-averaged Navier-Stokes) simu-
lations (42,43). A large number of closure models are based on the Boussinesq
concept of eddy viscosity, which models the turbulent shear stress as propor-
tional to the mean strain rate (gradient transport), by analogy to the viscous
shear stress in Newtonian fluids, which is proportional to the stain rate. For a
flow dominated by mean shear in the x1-direction, the Boussinesq approximation
is

��hu1u2i ¼ �T
@hU1i
@x2

ð79Þ

where mT, or more commonly, nT¼ mT / r is the eddy viscosity. Unlike the fluid
viscosity m and kinematic viscosity n¼ m/r, which are material properties, the
eddy viscosity is a flow property and depends strongly on the local turbulence.
Dimensionally, the eddy viscosity nT may be considered as the product of a char-
acteristic length scale and a characteristic velocity scale of the local turbulence,
and so the determination of nT is reduced to the determination of suitable charac-
teristic scales. Thus, eddy viscosity models are usually categorized according
to the number of supplementary transport equations which must be solved to
supply these scales or equivalent parameters. The so-called zero-equation models
do not use any additional equations but empirical information specific to each
flow configuration. The best known example is the Prandtl mixing length hypo-
thesis, providing the eddy viscosity as:

�T ¼ l2M
@hU1i
@x2

����
���� ð80Þ

where lM, the mixing length of turbulent motion, must be specified. The model
gives good predictions for many boundary layers, in which case lM is taken to
be proportional to the distance from the wall, and thin shear layer flows, in
which case lM is taken to be proportional to the width of the turbulent region.
However, equation 80 assumes that turbulence production is equal to the
dissipation at each point in the flow field, a deficiency leading to unrealistic
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simulations in many cases. Early one-equation models have fallen in disuse and
the only one in current use is the Spalart-Allmaras model, which introduces a
modeled transport equation for the eddy viscosity and has found application
mostly in external flows. The most popular turbulence models, combining versa-
tility and reasonably low computational times, are two-equation models that sup-
plement the RANS equations with two additional differential equations. These
include the k-e model, which utilizes transport equations for the turbulent inetic
energy per unit mass

k ¼ 1

2

X3
i¼1

hu2
i i ð81Þ

and its rate of dissipation by friction e, and the k-o model, which utilizes trans-
port equations for k and the specific dissipation rate (an inverse time scale) o / e/k.
The k-equation is derived following the Reynolds procedure from the Navier-
Stokes equations. It relates the rate of change of k to the advective transport
by the mean motion, turbulent transport by diffusion, generation by interaction
of turbulent stresses and mean velocity gradients, and dissipation. Equations for
e and o are devised by analogy to the k-equation and not from first principles. All
these equations rely heavily on modeling of the unknown terms, utilizing gradi-
ent transport concepts repeatedly. The k-e model has been used very widely in
both commercial and home made codes and found reasonable success in a wide
variety of applications. Among its known limitations is the computation of swir-
ling and curved flows and relatively low Reynolds number flows, especially close
to a wall. Improved performance in such cases has been achieved by a variant
known as the RNG (Renormalization Group) k-e model. In addition, empirical
relations called wall functions are used to bridge the viscous sublayer.

An inherent limitation of eddy-viscosity based models is that they model
turbulence as isotropic, giving all turbulent stresses as

��huiuji ¼ �T
@hUii
@xj

þ @hUji
@xi

� �
� 2

3
�k�ij ð82Þ

(Kronecker’s delta dij is equal to 1 when i¼ j and 0 otherwise), which is a general-
ization of equation 79. Reynolds stress models (RSM) do not assume this relation-
ship, but instead introduce additional differential transport equations for the
individual stresses �r huiuji. These transport equations are often referred to
as second-order closure schemes and are solved simultaneously with the modeled
dissipation equation and the Reynolds averaged equations. Thus RSM models
require more computer time and memory because of the larger number of equa-
tions involved and the nonlinearity and strong coupling of the set of equations.
This extra effort, however, yields more realistic results for flows having rotation,
curvature, and strong swirl. Simplified relations in the form of eddy viscosity
equations have been used to model the convective and diffusive terms in the dif-
ferential stress transport equations, thus reducing them to algebraic expres-
sions. These simplified models, which retain many of the features of the RSM
models, are called algebraic stress models (ASM).
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The current trend in turbulent modeling is not to produce more complex
models, but rather to refine relatively simple models to achieve an acceptable
compromise between accuracy and economy of computation. In this respect,
attention is given to the approach known as Unsteady RANS (URANS) (44),
which contains features of conventional RANS and LES. In this method, the
mesh is finer than that in conventional RANS but substantially coarser than
would be required for LES. URANS employs turbulent models but also resolves
the time-dependent large-scale motions and the total turbulent activity can be
found by adding the corresponding local solutions of the equations and the
time averaged fluctuations.

5. Experimental Fluid Mechanics

Despite significant developments in CFD, experimental fluid mechanics remain
an indispensable source of practical information for designing engineering sys-
tems and solving engineering problems as well as a prerequisite in developing
and verifying theories, models and algorithms. Much of our understanding of
physical phenomena and mechanisms and the discovery of new concepts and
applications is based on ingeniously conceived and meticulously executed experi-
ments. Measurements of fluid mechanical properties are performed regularly on
actual technological, biological and environmental systems, in order to monitor
or control their performance. Such systems may also be used to perform experi-
ments designed to expand our knowledge of associated phenomena and accumu-
late information which can be used in designing and optimizing future
components. Quite commonly, however, experimental fluid mechanics utilize
laboratory-based apparatus, which in some way simulates the actual or idealized
performance of real systems. Among the most commonly used laboratory appara-
tus are wind tunnels, water tunnels, open channels, towing tanks and flow loops
of various designs using different kinds of liquids and gases or multi-phase mate-
rials. Sometimes the objective of measurement is to document bulk properties,
namely values averaged in space and/or time, as, eg, the flow rate of and average
pressure drop in a fluid flowing through a pipe or the average drag force on an
object immersed in highly turbulent flow. Other times, however, the interest is in
measuring temporal variations of a property at a specific location, and even the
simultaneous temporal variation of local properties throughout the flow domain.
It is obvious then that requirements on the response of instrumentation
and measuring procedures vary widely, according to the objectives of each
experiment.

The remainder of this section briefly outlines the main types of instrumen-
tation and experimental methods used for the measurement of pressure, flow
velocity, temperature and related properties. Much more descriptive discussions
of these topics can be found in general references (45–55). The reader’s attention
is also directed to references discussing the related topics of signal acquisition
and processing (56) and measurement uncertainty (57,58).

Measurement of Flow Rate. This area encompasses the various flow
meters which measure either the mass or the volumetric flow rate through the
cross-section of a pipe, duct, etc (59–61). They include:
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Direct methods, which essentially time the passage of a given mass or volume
of the fluid. The simplest direct method, suitable for liquids only, is to col-
lect the discharge in a container of known volume. Positive displacement
flow meters perform the same task but operate continuously in line with
the flow circuit. They isolate an amount of fluid entering into them within
a well-defined compartment and then discharge it to their outlet. Represen-
tative types of positive displacement flow meters for liquids are nutating
disk, reciprocating piston, rotary piston, rotary vane, and rotor types; for
gases, they are roots, diaphragm and liquid-sealed drum types.

Restriction flow meters, which impose a restriction to the flow and thus intro-
duce a pressure difference, from which one can determine the flow rate by
using either a physical principle (eg, Bernoulli’s equation) or an empirical
calibration. Most common for pipe flows are the Venturi, nozzle, and orifice-
plate flow meters. For open channel flows, common are weirs and various
flumes, including the Venturi, Parshall and Palmer-Bowlus flumes.

Averaging Pitot-tubes, which are transverse tubes spanning the cross-section
and having multiple orifices facing the flow so that they average the total
pressure across the flow.

Laminar flow elements, which contain honeycombs or tube bundles with suffi-
ciently narrow individual cross-sections for the flow through each element
to be laminar and so they take advantage of the linear relationship between
the pressure difference across them and the flow rate.

Rotameters or variable area flow meters, which direct the flow upwards
through a vertical tapered tube containing a sphere, cone or other specially
shaped bluff body; the flow rate is indicated by the vertical position of the
body, in correspondence to the drag force it experiences.

Vortex shedding flow meters, which provide the bulk velocity through its re-
lationship to the frequency of vortices shed by an immersed bluff body with
sharp edges.

Drag or target flow meters, which determine the bulk velocity from the mea-
sured drag force on a disk or other object, called the target.

Turbine flow meters, which include axial turbines and paddlewheels and
provide the flow rate from its relationship to the speed of rotation of the
impeller.

Ultrasonic flow meters, which transmit ultrasound across the flow and either
measure its Doppler shift by dispersed scattering particles, or the difference in
transmission times of sound propagating toward upstream and downstream.

Electromagnetic flow meters, which are suitable for electrically conducting
liquids in pipes and measure the flow rate from a voltage difference across
the pipe caused by electric charge motion in an imposed magnetic field.

Coriolis flow meters, which pass the fluid through an oscillating element and
utilize the Coriolis effect; they are true mass flow meters and suitable for
non-Newtonian and multiphase flows.

Thermal mass flow meters, suitable for gas flows and monitoring temperature
differences introduced to the stream by heating elements; they require ca-
libration and correction factors when used in gases of different properties.
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Criteria for the selection of a flow meter include cost, range of operation,
accuracy, suitability for the particular flow of interest and pressure losses
imposed on the flow. A large variety of such instruments are available from
many different manufacturers.

Pressure Measurement. Pressure measurement in fluids is of great inter-
est in many engineering applications, due to the relationship of pressure to flow
velocity and forces on objects. Among the most common pressure-measuring
instruments one could list the following:

Liquid-in-glass manometers, either vertical or inclined, including various
micromanometers.

Mechanical pressure gages, including deadweight gages and Bourdon-tube
types, which deform under pressure.

Electrical transducers, including piezoelectric, strain-gage and variable capa-
citance, reluctance and inductance types; more recent types include semi-
conductor and microelectromechanical (MEMS) transducers.

In many cases, pressure is measured at the wall, through a small pressure
tap or by mounting the transducer flush with the flow. To measure in-flow pres-
sure, one may introduce a thin tube, which, depending on its design, can measure
the static (static tube) or the impact (Pitot tube) pressure. Fast response probes
utilize pressure transducers within the pressure tubes. Wall pressure variation
can be mapped with pressure sensitive paints, a technique used mostly in aero-
dynamics experiments.

Temperature Measurement. The most common types of thermometers
are

Liquid-in-glass thermometers, which contain mercury, alcohol or another
liquid and measure temperature from the thermal expansion of the liquid.
They are classified into complete, total and partial immersion types.

Bimaterial thermometers, mostly bimetallic, but also utilizing semiconduc-
tors. They consist of two thin, bonded together, layers of materials with
drastically different thermal expansion coefficients, which deform when ex-
posed to different temperatures. The alloy Invar is frequently used, due to
its extremely low thermal expansion coefficient.

Thermocouples, which are pairs of junctions of two metals that generate a vol-
tage difference when exposed to different temperatures (Seebeck effect).
Common are the J, E and K types.

Resistance temperature detectors (RTD), which measure temperature
through changes of the electrical resistance of a metallic element, usually
made of platinum or nickel. Very fine (1-mm diameter) platinum wires
(cold wires) are used for measuring temperature fluctuations in turbulent
air streams up to frequencies of a few kHz.

Thermistors, which are semiconductor resistance thermometers. They are
very sensitive, compared to RTD and thermocouples, but also highly
nonlinear and usable mainly in temperatures not very far from the ambient
value.
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High temperatures, above a few thousand degrees, can only be measured by
radiation emission methods, using optical pyrometers. Surface temperatures can
also be monitored using infrared thermography, while surface temperature maps
can be obtained with the use of temperature sensitive paints and liquid crystals.
Additional temperature measurement methods include laser-induced fluores-
cence and interferometry.

Velocity Measurement. Unlike flow rate measurement methods, local
flow velocity measurement entails sufficient spatial resolution to essentially
identify the velocity at a particular location and often to map the velocity varia-
tion over a line, surface or volume of interest. Some velocity measurement
methods have relatively slow response and provide time-averaged values,
while others have sufficient temporal resolution to measure the instantaneous
velocity, as required for the documentation of transient and turbulent flows.
The following are the most widely used techniques:

Pressure tubes, mainly combinations of static and Pitot (impact) tubes, which
measure velocity from pressure differences. Multihole probes are used
to measure velocity in both magnitude and direction, following proper
calibration.

Hot wire and hot film anemometry (HWA) (62–64), which measures flow velo-
city from its cooling effect on electrically heated thin wires (typically 5 mm
in diameter) and other fine sensors. Hot wires can only be used in clean
gases, but hot films are also suitable for liquid flows. These sensors have
the highest temporal resolution among other techniques. Multisensor com-
binations can be used to measure two velocity components or the entire
velocity vector and multiprobe arrangements to provide simultaneous mea-
surements at many locations.

Laser Doppler velocimetry (LDV or LDA) (65–68), which measures the velocity
of suspended fine particles through the Doppler shift of laser light scattered
by them. Due to the high cost of LDV components, this is essentially a sin-
gle-point measurement method. Another instrument utilizing the same
principle is the ultrasonic Doppler velocimeter, which uses ultrasonic
waves, rather than light waves. Its advantage is that it is suitable for opa-
que fluids, which would obstruct transmission of light.

Particle tracking, which is direct tracing of the positions of suspended parti-
cles, by direct viewing or from recorded images. Obviously, this method is
impractical when the particle concentration is so high that individual par-
ticles cannot be discriminated.

Particle image velocimetry (PIV) (69–71), which, like the previous method,
computes velocity from particle displacements, with the difference that
such displacements are averaged over a very small interrogation volume
and so PIV requires high particle densities. A dual-tube pulsed laser, in
combination with a lens that produces a light sheet, are most often used
to illuminate two closely timed images of a flow cross-section. A significant
advantage of PIV over previous methods is that it can map velocity varia-
tion over a planar region, from which one may determine streamlines, vor-
ticity and other properties, as well as instantaneous flow patterns. Its
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disadvantage is a relatively low temporal resolution, which is being im-
proved with the development of high repetition-rate pulsed lasers.

Wind velocity is commonly measured with the use of mechanical transducers,
including the vane, cup and propeller anemometers (72).

Composition Measurement. The identification of chemical composition of
passive mixtures as well as of reacting flows is a very important task in chemical
processes and combustion (73,74). When temporal resolution is not of concern,
this can be done by isolating a sample of the fluid through a syringe, sampling
tube, etc, and then analyzing its composition with the use of an Orsat analyzer,
gas chromatography, electronic testers, mass spectrometry, or absorption spec-
trophotometry. Monitoring of the emissions of exhaust gases from industrial
stacks is done with the use of continuous emission monitors (CEM), which are
standardized and regulated devices. At the laboratory level, concentration can
be measured with reasonable spatial and temporal resolution by the following
techniques:

Thermal probes, which are fine heated sensors, sensitive to temperature and
velocity, besides concentration and require elaborate calibration. Conduc-
tivity probes eliminate the dependence on velocity by passing flow samples
through a choked sonic nozzle.

Electric conductivity probes, usable for liquid solutions of electrolytes.

Light scattering methods, which include a variety of techniques. In the sim-
plest case, concentration of smoke and other suspensions can be determined
by measuring light absorption along the path of a beam or within a small
measuring volume. The Rayleigh scattering method is suitable for binary
gas mixtures, while Raman scattering methods can identify both the com-
position of gas mixtures as well as the concentrations of the constituents.

Laser induced fluorescence methods, which include methods using fluorescent
dyes (Fluorescein disodium and Rhodamines) in liquids and fluorescent ad-
ditives or products or reaction in gases.

The measurement of suspended particulate (solid particles or droplets) can
be obtained by gravimetric analysis of samples removed from the suspension and
by photographic, visual, and optical methods. Phase Doppler particle analysis is
a popular method that provides the size distribution of suspended particles and
which can be easily combined with laser Doppler velocimetry to measure simul-
taneously particle size and local flow velocity.

Void fraction measurement is particularly important in thermonuclear
power generation plants. Among the available techniques, one can mention the
quick-closing valve method, various sampling methods that separate phases,
electric impedance meters, methods based on heat transfer from fine heaters,
and methods based on light scattering, ultrasound scattering and X- and
gamma-ray radiation absorption.

Flow Visualization. Although of qualitative nature, flow visualization is a
very useful component in any fluid mechanics experiment, as it can detect the
presence of apparatus malfunctions and unwanted influences, identify the state
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of the flow (eg, whether laminar or turbulent) and the boundaries of different
flow regions, and provide valuable insight into physical and chemical mechan-
isms that may affect the flow (75–79). Because motions in clean air, water and
many other fluids are cannot be discriminated by the unaided human eye, the
visualization of flow patterns requires either the introduction of foreign sub-
stances, which act as flow markers when properly illuminated, or the use of opti-
cal techniques, which are sensitive to refractive index variations in the fluid.
Flow markers for liquids include: tufts, namely, short pieces of flexible yarn,
attached to the surface or to thin supports extending mid-stream; dyes of differ-
ent kinds, either injected into the fluid or locally generated by electrochemical or
photochemical reactions; hydrogen bubbles, generated on thin wires by electro-
lysis of water; air bubbles; and dispersed solid particles (eg, metallic or ceramic
dusts or flakes) and droplets of immiscible liquids. Flow markers for gases
include: tufts; oil films and dots applied to a surface; sublimating or soluble sur-
face films; pressure and temperature sensitive paints and liquid crystals; smoke
produced by burning of different substances and oil mists produced by evapora-
tion/condensation; aerosols; dispersed solid particles; soap bubbles; and sparks.
Optical techniques include the shadowgraph technique, the Schlieren technique,
interferometry, holography, and streaming birefringence.

6. Nomenclature

A cross-sectional area, frontal area
B volume
Ca capillary number
CD drag coefficient
c concentration, speed of sound
ci concentration of species i
cp specific heat under constant pressure
D diameter, frontal height
Ddrop droplet diameter
Dh hydraulic diameter
dp particle diameter
dp,av average (Sauter) particle diameter
Eö Eötvos number
Eu Euler number
e roughness height, specific energy
eij

rate of strain tensor
~FFB body force vector
FD drag force
Fn normal force component
Fr Froude number
~FFS surface force vector
Ft shear (tangential) force component
f frequency, friction factor
fi body force per unit volume
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fpor friction factor for porous media
Gr Grashof number
g gravitational acceleration magnitude
g* dimensionless gravitational acceleration
gi gravitational acceleration vector, i¼ 1,2,3
He Hedstrom number
h vertical elevation, overall heat transfer coefficient
Ji diffusive flux of species i
K consistency index
Kn Knudsen number
k thermal conductivity, turbulent kinetic energy
L characteristic length
Lent pipe entrance length
Lo length scale
lM mixing length
M Mach number
Ma Marangoni number
Mo Morton number
Nu Nusselt number
n behavior index
P pressure, wetted perimeter
P*

dimensionless pressure
Po reference pressure
Pr Prandtl number
Pv vapor pressure
p mean-free pressure fluctuation
� Q heat transfer rate
R1,R2 principal radii of curvature
Ra Rayleigh number
Re Reynolds number
ReBin Reynolds number for Bingham fluids
Repl Reynolds number for power-law fluids
Repor Reynolds number for porous media
Retransition transition Reynolds number
Ri Richardson number
Ri production rate of species i
Ro Rossby number
S surface, surface area
Sc Schmidt number
St Strouhal number
T temperature, time interval
Ta Taylor number
t time
Ub bulk velocity
Ui velocity vector in Cartesian form, i¼ 1,2,3
Ui

*
dimensionless velocity vector, i¼ 1,2,3

u specific internal energy
ui mean-free velocity fluctuation vector, i¼ 1,2,3
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V velocity magnitude
~VV velocity vector
Vl interstitial velocity
Vo velocity scale
Vrel relative velocity
VS superficial velocity
� Wother electrochemical/radiation power
� Wsh mechanical power by shear stresses
x streamwise coordinate
xi Cartesian coordinate, i¼ 1,2,3
x�i dimensionless Cartesian coordinate, i¼ 1,2,3
y transverse coordinate
g ratio of specific heats, thermal diffusivity
� g shear rate
gc molecular diffusivity
D P pressure difference
D T temperature difference
D Vmax maximum velocity difference in a free shear flow
dij Kronecker’s delta
e porosity, void fraction
e turbulent kinetic energy dissipation rate
~�� vorticity vector
y angle
k permeability
l molecular mean free path, dilatational viscosity
l1, l2 relaxation times
m (dynamic, shear) viscosity
mo modulus of rigidity
ml liquid viscosity
mT eddy viscosity
n kinematic viscosity
nT eddy (kinematic) viscosity
p 3.14149. . .
r density
rl liquid density
s surface tension, normal stress
sc cavitation number
s i normal stresses, i¼ 1,2,3
t shear stress
tij shear stresses, i, j¼ 1,2,3
txy shear stress
tyield yield stress
f velocity potential
c stream function
� rotation rate
h. . .i ensemble average
(. . .) time average
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