MATERIALS RELIABILITY
1. Introduction

Reliability is a parameter of design like a system’s performance or load ratings
and is concerned with the length of failure-free operation. It is difficult to con-
ceptualize reliability as part of the usual design calculations. Further complica-
tions are the complexity of organizations needed to produce the large systems of
today and the usual time and financial constraints on research and development.
Reliability as it relates to products or equipment can be measured in various
ways. Since it is a design parameter, it has to be addressed early in the design
cycle.

2. Terminology

2.1. Reliability. The reliability of a system is defined as the probability
that the system will perform its intended function satisfactorily for a specified
interval of time when operating under stated environmental conditions. It has
to be realized that supposedly identical products fail at different times, thus
reliability can be quantified only as a probability. For any product there is
some underlying function that describes this success pattern. Typical reliability
functions are shown in Figure 1 for two different products. These products can be
compared at the same reliability level R, or the reliability levels can be compared
for any selected time period, Zs.

In applying the definition of reliability, the concept of adequate perfor-
mance must be established clearly. Products usually do not fail suddenly, but
degrade over time. Gasket leaks on equipment, for example, may start as a
slow weep and increase in volume over time. The point at which this undesirable
occurrence is called a failure must be clear before reliability can be measured
objectively. Changing the failure definition for a product changes its reliability
level, although the product itself has not changed.

The reliability level of a product also depends on the operating or environ-
mental conditions, which may produce a variety of failure modes. Reliability can
only be assessed relative to a defined environment. Unless these points are estab-
lished clearly, confusion surrounds any quoted reliability number for a product.

Because of the interrelationship of the system measures, reliability should
not be considered by itself since, if taken alone, it does not express the totality of
attributes that contribute to system effectiveness. However, in practice, reliabil-
ity has gained the most acceptance and uniformity of definition. The other con-
cepts described are not always defined uniformly from group to group and are
sometimes used interchangeably. Further discussion of these concepts is found
in References 1 and 2.

2.2. System Effectiveness. A system is designed to perform some
intended function in a prescribed fashion. This overall capability is termed sys-
tem effectiveness. Figure 2 illustrates the design trade-offs that constitute the
components of system effectiveness.

From the standpoint of a military product, system effectiveness is the prob-
ability that the system meets successfully an operational demand within a given
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time when operating under specified conditions. From the standpoint of commer-
cial products, system effectiveness is harder to define, but basically means cus-
tomer satisfaction. There are several system parameters that are important to
the customer. Some of these parameters are defined below.

Maintainability. Maintainability is a characteristic of design, installation,
and operation, usually expressed as the probability that a system can be restored
to specified operable conditions within a specified interval of time when mainte-
nance is performed in accordance with prescribed procedures. The ease of fault
detection, isolation, and repair are all influenced by system design and are prin-
cipal factors contributing to maintainability. Also contributing is the supply of
spare parts, the supporting repair organization, and preventative maintenance
practices. Maintainability must be designed into the equipment. Some factors
to consider follow.

Accessibility. Accessibility means having sufficient working space
around a component to diagnose, troubleshoot, and complete maintenance activ-
ities safely and effectively.

Captive Hardware and Quick Attach/Detach. Captive and quick
attach/detach hardware provides for rapid and easy replacement of components,
panels, brackets, and chassis.

Color Coding. New machinery and equipment must conform to OSHA
standards and OEM specifications for color coding. Color coding can also help
to speed up maintenance procedures. Examples include lubrication information,
orientation, timing marks, torque requirements, etc.

Common Tools. Specialty tooling for maintenance repairs should be
avoided. Standard tools readily available to the maintenance organization should
be used.

Diagnostics. Diagnostic devices indicating the status of equipment
should be built into the system to aid maintainability.

Modularity. Modularity requires that designs be divided into physically
and functionally distinct units to facilitate removal and replacement. Modularity
allows design of components as removable and replaceable units for minimum
downtime.

Standardization. Design systems that incorporate component parts that
are commercial standard, readily available, and common from system to system
contribute to enhanced maintainability and to greatly reduced investment in
spare-parts inventories.

Serviceability. Serviceability is defined as the degree of ease (or difficulty)
with which a system can be repaired. This measure specifically considers fault
detection, isolation, and repair. Repairability considers only the actual repair
time, and is defined as the probability that a failed system is restored to opera-
tion in a specified interval of active repair time. Access covers, plug-in modules,
or other features to allow easy removal and replacement of failed components
improve the repairability and serviceability (see also ELECTRICAL CONNECTORS).

Availability. The system attributes of maintainability and reliability must
both be considered. The trade-offs are rather complex and difficult to capture
with any one measure. However, the term availability has been used to quantify
these attributes simultaneously. The availability is sometimes related by inher-
ent availability:
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_ MTBF )
~ MTBF + MTTR @)

The mean time between failures MTBF is used as a measure of system reliabil-
ity, whereas the mean time to repair MTTR is taken as a measure for maintain-
ability. For example, a system with an MTBF of 1200 h and a MTTR of 25 h
would have an availability of 0.98. Furthermore, if only an MTBF of 800 h
could be achieved, the same availability would be realized if the maintainability
could be improved to the point where the MTTR was 16 h. Such trade-offs are
illustrated in Figure 3, where each curve is at a constant availability.

3. Design Reliability

Since reliability and the related measures are essentially design parameters,
improvements are most easily and economically accomplished early in the design
cycle. Useful techniques for design reliability improvement are described below.

3.1. Design Review. A design review is a formalized, documented, and
systematic audit of a design by senior company personnel. It addresses the com-
plex design trade-offs and assures early design maturity. It should be multi-
phased and performed at various stages of the product development cycle. The
parameters contributing to product availability must be a recognized input to
this process.

Definite and known procedures for follow-up must be provided for, with the
design group assessing the value of each idea and suggestion presented by the
review committee. The actions taken are known to the committee and subject
to further review. With such organization, the trade-offs can be acted upon at
the appropriate level.

3.2. Failure Mode and Effects Analysis. The system design activity
usually emphasizes the attainment of performance objectives in a timely and
cost-efficient fashion. The failure mode and effects analysis (FMEA) procedure
considers the system from a failure point of view to determine how the product
might fail. The terms design failure mode and effects analysis (DFMEA) and fail-
ure mode effects and criticality analysis (FMECA) also are used. This FMEA
technique is used to identify and eliminate potential failure modes early in the
design cycle, and its success is well documented (3,4).

The FMEA begins with the selection of a subsystem or component and then
documents all potential failure modes. Their effect is traced up to the system
level. A documented worksheet similar to Figure 4 is used on which the following
elements are recorded.

Function. This describes in a concise, short statement the exact func-
tion(s) the component/subsystem must perform. A component/subsystem may
have more than one function.

Failure Mode. The failure mode identifies how the component/subsystem
can fail to perform each required function. A function may have more than one
failure mode.
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Failure Cause. The failure cause is the physical, chemical, electrical,
thermal, or other design deficiency which caused the failure. The agent, physical
process, or hardware deficiency causing the failure mode must be identified, ie,
what caused the failure for each failure mode. There may be more than one
cause.

Failure Effect. The failure effect is the local effect on the immediate com-
ponent/subsystem and the global effect on system performance/operation. In
commercial products, the effect on the customer, ie, the global effect, must be
addressed.

Criticality Analysis. The criticality assessment provides a figure-of-
merit for each failure mode. This figure of merit is based on the likelihood of
occurrence of the failure mode (Occ), the criticality (severity) of the failure
mode on system performance (Sev), and the detectability of the failure mode
by the user prior to occurrence (Det).

The purpose of the criticality rating is to provide guidance as to which fail-
ure modes require resolution. However, critical modes of failure resulting in
unsafe operation should be given special attention, and design/verification
actions should be taken to ensure that they never occur.

The most popular scheme among commercial companies is the assignment
of a risk priority number (RPN) based on probability of occurrence, detectability,
and severity of a particular failure mode. The factors (Occ, Sev, and Det) are each
rated on a 1 to 10 scale and then an RPN is based on the product of the three
rating values.

These procedures ensure early design maturity. Performing an FMA on
purchased equipment may eliminate maintenance problems and provide a plan
for spare-parts inventories.

3.3. Life-Cycle Cost. The total cost of ownership of a system during its
operational life can be accounted for. The cost of ownership not only includes the
initial design and acquisition cost but also cost of personnel training, spare-parts
inventories, repair, operations, etc. A complete projection of system costs might
point out the wisdom of investing more initially in order to forego high mainte-
nance costs owing to poor reliability and serviceability, as illustrated in Figure 5.

4. System Reliability Models

Static reliability models are used in preliminary analyses to determine necessary
reliability levels for subsystems and components. A subsystem is a particular low
level grouping of components. Some trial and error is usually necessary to obtain
reasonable groupings for any particular system. Early identification of potential
system weaknesses facilitates corrective action.

A reliability block diagram can be developed for the system from the defini-
tion of adequate performance. The block diagram represents the effect of subsys-
tem or component failure on system performance. In this preliminary analysis,
each subsystem is assumed to be either a success or failure. A reliability value is
assigned to each subsystem where the application and a specified time period are
given. The reliability values for each subsystem and the functional block diagram
are the basis for the analysis.
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4.1. Series Systems. The series configuration is the most commonly
encountered in practice. In a series system, all subsystems must operate success-
fully for the system to be successful. The reliability block diagram is given in
Figure 6.

The system reliability is

Rs = ﬁRl (2)

where R; is the reliability for the ith subsystem, and R, is system reliability. It
can be seen that

R, < miin{Ri} (3)

or the reliability of the system is never greater than the least reliable subsystem.
In this analysis it is assumed that subsystems fail independently.

In a series system, if each subsystem had an exponential time to failure
given by

f&)=xe™,  t>0 (4)

where 1, is the failure rate for the ith subsystem. The system failure rate is
A= N (5)
i—1
or if MTBF's are used, then
1
= >1/6) (6)

where 6; = 1/);. Failure rates are sometimes more convenient to use in high
reliability systems and are simply apportioned by equation 5.

Example 1. A gear pump is to be designed for use as an emergency
backup system. The pump is driven by a small gasoline engine. Electronic sen-
sing and starting circuitry are provided to automatically start the system during
a power failure. Figure 7 gives a possible reliability block diagram for the system.
For this application the reliability values are as follows: R; = 0.9999; Ry = 0.95;
R3; =0.90; R4 =0.999. This would give an overall system reliability of R; =
0.9999 x 0.95 x 0.90 x 0.999 = 0.8541.

If the information is insufficient to select the R; values for this application,
failure rates can be obtained from available sources (5,6). The failure rates
obtained might be as follows: A\; =2.67 x 107%/h, X3 =591 x 107%/h, A3 =
9.03 x 1076/h, Ay = 4.45 x 107%/h. Then

A = 607.15 x 10 /h
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where A, is the sum of L1, Ao, A3, and L4. For an operating period of 12 h the relia-
bility as calculated from equation 11 is

R(12 h) = exp[ — 12 x 607.15 x 1075] = 0.9927

In using these failure rates an exponential distribution for time to failure
was assumed. Such an assumption should be made with caution.

4.2. Parallel Systems. A parallel (or redundant) system is not consid-
ered to be in a failed state unless all subsystems have failed. The system relia-
bility is calculated as

n

R,=1-][(1-Ry) (7)

i=1

System reliability is improved by providing alternative means for performing the
same task. For example, automobiles were equipped with hand cranks even
though they had electric starters. This back-up equipment was provided because
at that time starters were unreliable. In contemporary system design, factors
such as added cost, weight, and space may prohibit the use of redundant
systems.

Systems can have both parallel and series subsystems. Reliability is calcu-
lated by successively reducing the system using the basic series or parallel for-
mulas. This is illustrated in Example 2.

Example 2. Figure 8 shows a system block diagram indicating subsystem
reliabilities. Applying equation 7 to part A of Figure 8 gives

R, =1-(0.20)(0.25) (0.30) = 0.985
For part B:
R, =1-(0.40) (0.15) = 0.94
Then the series equation is applied to give the system reliability
R, =0.999 x 0.985 x 0.99 x 0.94 = 0.916

Some systems cannot be represented by a simple combination of series and
parallel subsystems. The systems are more complex in nature and the concept of
coherent systems must be used in a more general and powerful treatment (7).
5. Reliability Measures
The reliability function R(#) is defined as

R#)=Pit>t)=1-F() (8)

where t is the time-to-failure random variable and F(¢) is the cumulative distri-
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bution. In terms of the probability density function f(¢), the reliability function is
given by

t
R() = [ flu)du 9)
For example, if the time to failure is given as an exponential distribution, then
f&) =X t>0, A>0 (10)

and the reliability function is found as follows:

¢
R(t) = / e Ndu =e M, t>0 (11)

[o¢]

5.1. Life Expectancy of Devices. The expected or average life of devices is
defined as

E(t) = / uf ) du (12)

where f(¢) is the probability density function (PDF) for the time-to-failure ran-
dom variable t. The expected life also can be found from

E®t) = / OR(t)dt, £>0 (13)

The expected life is sometimes used as an indicator of system reliability;
however, it can be a false indication and should be used with caution. In most
test situations the chance of surviving the expected life is not 50% and depends
on the underlying failure pattern. For example, considering the exponential as
used in equation 10, the expected life would be

E(t) = / "t Nt = 1/ (14)

o]

and the chance of surviving this time can be found from the reliability function
Rt=1/\)=e1=0.368 (15)

That is, in this case there is only a 36.8% chance of surviving the mean life. If the
distribution were other than exponential, the chance of survival would change.
Since the mean life is not associated with constant reliability, the expected life
should not be the only indicator of reliability, particularly when comparing
products.

5.2. Failure Rate and Hazard Function. The failure rate is defined as
the rate at which failures occur in a given time interval. Considering the time
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interval [¢,, £o], the failure rate is given by

R(t1) — R(ts)
— = 16
(t2— DR (1) 19
and this is the rate of failure for those surviving at the beginning of the interval.
This formula can be used to calculate failure rate from empirical life-test data.

The hazard function is defined as the limit of the failure rate as the interval
of time approaches zero. The resulting hazard function A(¢) is defined by

0= b a7

The hazard function can be interpreted as the instantaneous failure rate. The
quantity k(f)At for small A¢ represents the probability of failure in the interval
At, given that the device was surviving at the beginning of the interval.

The failure rate changes over the lifetime of a population of devices. An
example of a failure-rate vs product-life curve is shown in Figure 9 where only
three basic causes of failure are present. The quality-, stress-, and wearout-
related failure rates sum to produce the overall failure rate over product life.
The initial decreasing failure rate is termed infant mortality and is due to the
early failure of substandard products. Latent material defects, poor assembly
methods, and poor quality control can contribute to an initial high failure rate.
A short period of in-plant product testing, termed burn-in, is used by manufac-
turers to eliminate these early failures from the consumer market.

The flat, middle portion of the failure-rate curve represents the design
failure rate for the specific product as used by the consumer market. During
the useful-life portion, the failure rate is relatively constant. It might be
decreased by redesign or restricting usage. Finally, as products age they reach
a wearout phase characterized by an increasing failure rate.

In real-life applications, many other failure mechanisms are present and
this type of curve is not necessarily obtained. For example, in a multicomponents
system the quality related failures do not necessarily all drop out early but might
be phased out over a longer period of time.

Hazard function, PDF, and reliability function are related for any theoreti-
cal failure distribution. The relationships are

f(t) = h(t)exp {—/toh(u)du} (18)
and
R(¢) = exp [—/toh(u)du} (19)

5.3. Conditional Failure Probability. The concept of conditional prob-
ability of failure is useful to predict the chances of survival for a device that has
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been in operation for a period of time and is not in a failed state. Such informa-
tion is helpful for maintenance planning.

If a device has a reliability function R(¢) and has been successfully operating
for a period of time T, the conditional reliability function is given by

R(¢)

Ritt>T) = R(T)’ t>T (20)

The use of this concept is illustrated in Example 3.

Example 3. A centrifugal pump moving a corrosive liquid is known to
have a time-to-failure that is well approximated by a normal distribution with
a mean of 1400 h and a standard deviation of 120 h. A particular pump has
been in operation for 1080 h. In order to plan maintenance activities the chances
of the pump surviving the next 48 h must be determined.

Applying equation 20 gives

R(1128 h)

To determine R(¢) for the normal distribution, a standard normal variate must be
calculated by the following formula:

O (21)

where p is the mean time to failure, and o is the standard deviation. Applying
this formula for ¢ = 1080 h gives

z = (1080 — 1400)/120 = —2.67
Then this value of z is used with any readily available normal table to find
R(1080 h) = 0.99621
Similarly
R(1128 h) = 0.98840

which is the unconditional probability of surviving 1128 h. The conditional prob-
ability of survival is then

R(1128 hjt > 1080 h) = 0.98840/0.99621 = 0.99216

In this application, based on the consequences, management has a rule to plan a
replacement when the reliability over the next 48 h period drops below 0.99. In
this case they would forego scheduling the replacement.

Example 3 illustrated the use of the normal distribution as a model for
time-to-failure. The normal distribution has an increasing hazard function
which means that the product is experiencing wearout. In applying the normal
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to a specific situation, the fact must be considered that this model allows values
of the random variable that are less than zero whereas obviously a life less than
zero is not possible. This problem does not arise from a practical standpoint as
long as p/o > 4.0.

6. Exponential Distribution

The exponential distribution has proved to be a reasonable failure model for elec-
tronic equipment (8—13). Since the field of reliability emerged, owing to problems
encountered with military electronics during World War II, exponential distribu-
tion has had considerable attention and application. However, like any failure
model, it has limitations which should be well understood.

6.1. Basic Statistical Properties. The PDF for an exponentially dis-
tributed random variable t is given by

ft, ) = de ™, t>0 (22)

where A is the failure-rate parameter. The quantity § = 1/ is the mean or
expected life, also expressed as MTBF. The PDF is shown in Figure 10.

The reliability function is given by
Rit)y=e™, t>0 (23)
or
Rit)y=e  t>0 (24)

whereas the hazard function is
1
h(t)y=r= (25)

The hazard function is a constant which means that this model would be applic-
able during the midlife of the product when the failure rate is relatively stable. It
would not be applicable during the wearout phase or during the infant mortality
(early failure) period.

On complex systems, which are repaired as they fail and placed back in ser-
vice, the time between system failures can be reasonably well modeled by the
exponential distribution (14,15).

6.2. Point Estimation. The estimator for the mean life parameter 6 is
given by

§ =

T
- (26)

where T is total accumulated test time considering both failed and unfailed (or
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suspended) items; and r is total number of failures. The reliability function is
then estimated by

Rt)=e'’, t>0 (27)

Example 4. A particular microprocessor (MPU) is assigned for a fuel-
injection system. The failure rate must be estimated, and 100 MPUs are tested.
The test is terminated when the fifth failure occurs. Failed items are not
replaced. This type of testing, where n is the number placed on test and r is
the number of failures specified, is termed a Type II censored life test.

Assuming that the above test produces the following data (failure time
in hours), 84.1; 240.1; 251.9; 272.2; 291.9, the MTBF is estimated by using
equation 26:

84.1+ 240.1 4+ 251.9 + 272.2 + 291.9 + 95(291.9)

= 4h
5 577

é:

From equation 8 it was shown that the chance of surviving the mean life
was 36.8% for the exponential distribution. However, this fact must be used
with some degree of rationality in applications. For example, in the above situa-
tion the longest surviving MPU that was observed survived for 291.9 hours. The
failure rate beyond this time is not known. What was observed was only a failure
rate of A = 1.732 x 10~ failures per hour over approximately 292 hours of opera-
tion. In order to make predictions beyond this time, it must be assumed that the
failure rate does not increase because of wearout and aging.

The reliability function in this example could be estimated as

R(t) — o tx1.782x 10-4/h

Since these MPUs are used to control fuel-injection systems, it might be interest-
ing to know the 24,000-km reliability (the warranty period). Assuming an aver-
age speed of 80 km/h, 300 h of use are obtained. The reliability would be
estimated as

R(300 h) = 0.949

or about 5.0% failures can be expected over the warranty period.

Example 5. There are six dynamometers available for engine testing.
The test duration is set at 200 h which is assumed to be equivalent to 20,000
km of customer use. Failed engines are removed from testing for analysis and
replaced. The objective of the test is to analyze the emission-control system. Fail-
ure is defined as the time at which certain emission levels are exceeded.

The testing situation where the duration is specified (ie, time-truncated) is
termed Type I censored life testing.
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Assuming that this test produces five failures, the MTBF would be esti-
mated as

120,000 km

0= 5 failures ~ 2+000 km

or the failure rate is
A =4.17 x 107° failures/km

Again, these estimates must be used with caution. The system is obviously a mix-
ture of electrical and mechanical components, and it can be assumed that wear-
out starts well beyond the 20,000 km period. If this is a reasonable assumption
based on experience, then reliability predictions can be made over the 20,000-km
period. For example, the 6000-km reliability might be estimated as

R(6000 km) = 0.79

However, a 50,000-km reliability estimate might not be reasonable based on this
testing scheme.

6.3. Confidence-Interval Estimates. Confidence-interval estimates for
the expected life or reliability can be obtained easily in the case of the exponen-
tial. Here only the limits for failure-censored (Type II) and time-censored (Type I)
life testing are given. It is possible to specify a test as either time- or failure-
truncated, whichever occurs first. The theory for such tests is explained in
References 16 and 17.

Time-Censored Life Tests. 1In this case the total test time T is specified.
From the test, r failures are observed. The 100(1 — «)% two-sided confidence
interval for the expected life is

2T 2T

<0< (28)

X(21/2‘2(r+1) X%—a/zz;«
The quantities XZB,Z, are the (1 — /3) percentiles of a chi square distribution with v
degrees of freedom and are found readily in chi square tables.

Frequently, only a one-sided lower confidence limit is desired. In this case
the limit is

2T

0 (29)
Xa,2(r+1)

This is a 100(1 — a)% lower confidence limit.

If these limits on the expected life are designated by L and U for the lower
and upper, respectively, then the 100(1 — «)% confidence interval on the reliabil-
ity is

el < R(t) < eV (30)
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Failure-Censored Life Tests. In this testing situation, the number of fail-
ures r is specified with n items initially placed on test (r <n). The test produces
failure times ¢4, 5 . .. t,. The 100(1 — «)% confidence interval for the expected life
is calculated by

oT oT
<9<

v R (31)
X(zy/zzr X%fa/Z‘,Zr
Here again the quantity xzﬁ,,, is the (1 — ) percentile of a chi square distribution
with v degrees of freedom.

If only a 100(1 — )% lower confidence limit is desired, it can be calculated
from

2T

—— <0 (32)
Xa,2r

The confidence limits for the reliability function can be found from equation 30.

6.4. The Nonzero Minimum-Life Case. In many situations, no failures
are observed during an initial period of time. For example, when testing engine
bearings for fatigue life no failures are expected for a long initial period. Some
corrosion processes also have this characteristic. In the following it is assumed
that the failure pattern can be reasonably well approximated by an exponential
distribution.

The PDF for the two-parameter exponential distribution is given by

1 ;
f(¢,0,6) = ge—“—“/", t>6>0, 6>0 (33)

The reliability function is
Rit)y=e 90 t>6>0 (34)

The expected life is (6 + 6). The quantity o is referred to as the minimum life
parameter.

Point Estimation. This is a Type II censored life-testing situation where n
items are placed on test and the test is terminated at the time of the rth failure.
The life test produces the ordered failure times ¢4, ¢5 - - - £,.. The estimator for 0 is

r

dti—t1)+(n—r)t—t)

= i=2 = (35)

and the estimator for 6, the minimum life, is

5:751—g
n
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The reliability function is then estimated as
Rt)=e @90 ¢t>5§ (37)

Confidence Limits. The 100(1 — a)% confidence interval for the para-
meter 0 is

2§r—1)0 <0< 3(7‘—1)9 (38)
Xo/2,2(r—1) X1-0/2.2(r1)
and the 100(1 — 5)% confidence interval for the minimum life 6 is
9
i1 — EF{],Z,Z(r—l) <6<ty (39)

The quantity Fp, ,, is the (1 — 3) percentile of an F-distributed random variable
with v;, vy degrees of freedom and is readily obtainable from F-tables.

Example 6. A return spring used on a butterfly-valve mechanism must
have a high reliability. In order to determine the spring reliability, fifty springs
are randomly selected and placed on life test. The test is terminated when the
tenth spring fails. The data are given in the left column of Table 1. For the
right column, equation 35 is applied.

The estimate of 9 is

i 116.1 + (;10) (22.6) _ 113.3 x 10 cycles

and the minimum life is estimated from equation 36 as

5=61.0— %?(’)'3 = 58.7 x 10° cycles

Since the minimum life is critical in this application, a confidence limit esti-
mate would be more appropriate, which can be calculated with the help of equa-
tion 39. For a 90% confidence limit, the required value of F'is

Fo102,18 = 2.62

and substituting into the confidence interval equation gives

61.0 —%%3(2.62) x 103 cycles < 6 <61.0 x 108 cycles

or

55.1 x 10° cycles < 6 <61.0 x 108 cycles
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In order to ensure virtually failure-free operation, a policy of changing this
spring at 50,000 cycles of operation might be adopted.

In test planning, the number to be placed on test n and the number of fail-
ures r must be determined. The operating characteristic curves in Reference 18
can be used to specify the test, and to control the errors.

7. The Weibull Distribution

The Weibull distribution is a more versatile failure model than the exponential
one. It is a popular model and widely used to estimate product reliability because
it can be analyzed graphically with Weibull probability paper. Although the gra-
phical form of analysis is presented here, other procedures are available (19-21).

7.1. Basic Statistical Properties. The reliability function for the three-
parameter Weibull distribution is given by

,‘3
Rw=emk(§}9], t>6>0, B3>0, 0> (40)

where § is minimum life, # is characteristic life, and B is Weibull slope.
The two-parameter Weibull has a minimum life of zero and the reliability
function is

Rit)=e @' ¢t>0 (41)

The hazard function for the two-parameter Weibull is

P t>0 (42)

This hazard function decreases with 8 < 1, increases with 8 > 1, and remains
constant for 3 = 1. The value of § can give some indication of wearout or infant
mortality.

The expected life for the two-parameter Weibull distribution is

5= 00(1+1/8) (43)

where I'(-) is a gamma function and can be found in gamma tables. The variance

for the Weibull is
2 1
292{r<1+)—r2<1+>] 44
o 3 3 (44)

The characteristic life parameter 0 has a constant reliability associated with
it. Evaluating the reliability function at ¢ = 6 gives

R(#) =e1=0.368
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and this is the same for any parameter value. Thus it is a constant for any
Weibull distribution.

7.2. Parameter Estimation. Weibull parameters can be estimated
using the usual statistical procedures; however, a computer is needed to solve
readily the equations. A computer program based on the maximum likelihood
method is presented in Reference 22. Graphical estimation can be made on
Weibull paper without the aid of a computer; however, the results cannot be
expected to be as accurate and consistent.

The two-parameter cumulative Weibull distribution is

F(t)=1—e @7 (45)

which, after rearranging and taking logarithms twice becomes

1

This would give a straight line plot on rectangular graph paper. Weibull graph
paper plots [F(¢), t] as a straight line. Figure 11 illustrates a typical Weibull

paper.

In using Weibull graph paper, a plotting position p; = F(¢;) for the jth-
ordered observation has to be decided. The mean or median are the principal con-
tenders. The median can be conveniently approximated (23) by

Jj—03
Pi= n+0.4 (47)
and the mean is given by
o

The failure points (¢, p;) are plotted and a straight line is fitted to estimate the
Weibull population.

Example 7. In order to illustrate graphical parameter estimation, five
failure times are considered: 24,000 km, 39,000 km, 52,000 km, 64,000 km,
and 82,000 km. These times-to-failure were obtained by placing five items on
test and allowing them to go to failure.

The median-rank plotting positions are obtained from equation 47. Tables
such as found in Reference 24 can be used also. The data ready for plotting are
given in Table 2 and are plotted on the Weibull paper in Figure 11. The Weibull
slope parameter is estimated as 8 = 2.0, and this implies an increasing failure
rate. The characteristic life is estimated using the 63% point on the cumulative
scale which gives 6 = 61,000 km. Confidence limits can be also placed about this
line; however, special tables are needed (24). The population line can be used to
estimate either percent failure at a given time or the time at which a given per-
centage will fail.
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In plotting on Weibull paper, a downward concave plot implies a nonzero
minimum life. Values for § < #; can be selected by trial and error. When they
are subtracted from each ¢;, a relatively straight line is produced. This essentially
translates the three-parameter Weibull distribution back to a two-parameter
distribution.

As can be seen from Figure 11, the graphical method does provide a good
visual means for analyzing life data and is easily understood and explained. If
used with discretion, graphical analysis can provide a useful means for data
analysis.

8. Binomial Distribution

To determine in the laboratory if a component survives in use, a test bogey is fre-
quently established based on past experience. The test bogey is correlated with
the particular test used to duplicate (or simulate) field conditions. The bogey can
be stated in cycles, hours, revolutions, stress reversals, etc. A number of compo-
nents are placed on test and each component either survives or fails. The relia-
bility for this situation is estimated.

The failure model is the binomial distribution given by

p@)6>ma—Rwy, y=0,1,2...n (49)

where R is the product reliability; n, the total number of products placed on test;
and y, the number of products surviving the test. Furthermore

(n) B n!
y) Yn—=y)
The quantity p(y) is the probability that exactly y out of n components survive the
test where the component reliability is R.

8.1. Reliability Estimation. Both a point estimate and a confidence
interval estimate of product reliability can be obtained.

Point Estimate. The point estimate of the component reliability is given
by

R=2 (50)

Confidence Limit Estimate. An exact 100(1 — a)% lower confidence limit
on the reliability is given by

Y
Ry = 51
L y+ (n -y + l)Fa,2(nfy+1),2y ( )

where F, 5,_y11) 2y is easily obtained from tables for values of F.
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A convenient approximate limit based on the normal distribution given by

R, = @z” ) (52)
nn—y+1
R T o)

where z, is the upper (1 — «) percentile of the standard normal distribution as is
readily obtained from normal tables.

Example 8. There are 40 components placed on an accelerated 80-h life
test. A 75% lower confidence limit on the reliability is desired.

To use equation 51, a value of F must be looked up. In this case, n = 40 and
y = 37, and the required value is

Foos874 =131

The lower confidence limit is calculated by

37

Br =577 (4 x 1.31)

=0.876

or the 75% lower confidence limit on the reliability is
0.876 <R

If the approximate limit given by equation 52 is used, the value for zg o5 is 0.67.
The limit would be calculated as

R; = 36 =0.869

404
40 +0.67,/ %)
+ 35

As can be seen, the approximation is reasonably close. This approximation is bet-
ter with large degrees of freedom for the value of F.

8.2. Success Testing. Acceptance life tests are sometimes planned
with no failures allowed. This gives the smallest sample size necessary to demon-
strate a reliability at a given confidence level. The reliability is demonstrated
relative to the test employed and the testing period.

For the special case where no failures are allowed (y = 0) the 100(1 — @)%
lower confidence limit on reliability is given by

Ry = al/m (53)

where o is the level of significance, and »n is the sample size. If C = 1 — « is taken
as the desired confidence level, then the required sample size to demonstrate a
minimum reliability of R is

_In(1-0)
n=— s (54)
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For example, if a reliability level of R = 0.85 is to be demonstrated at 90% con-
fidence, the required sample size is

where no failures are allowed.
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Fig. 3. System availability trade-off curves. MTBF = mean time between failures;
MTTR = mean time to repair.
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Table 1. Cycles to Failure

ti X 103 (ti — tl) X 103
61.0 0
64.1 3.1
64.6 3.6
66.2 5.2
73.9 12.9
75.0 14.0
77.4 16.4
79.8 18.8
80.5 19.5
83.6 22.6

ST =116.1
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Table 2. Weibull Paper Plotting Data

Order Failure times, Cumulative
number, j ¢, km frequency, p;, %
1 24,000 13
2 39,000 31
3 52,000 50
4 64,000 69
5 82,000 87




