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SAMPLING TECHNIQUES
1. Introduction

Sampling is a statistical procedure that involves the selection of a finite number
of individuals to represent and infer some knowledge about a population of con-
cern. Sampling techniques are used in a wide range of science and engineering
applications; they are of basic importance in computational statistics, in the
implementation of probabilistic algorithms, and in related problems of statistical
computing that have a stochastic ingredient (eg, financial modeling, artificial
intelligence, computational chemistry, risk and uncertainty analysis, and design
of experiments). This article is devoted to the role of sampling in process systems
engineering.
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Uncertainty analysis is a crucial step in process design and development
due to the fact that over the life cycle of the process, product demands change,
there may be variations in feedstock and product specifications, and the process
may be subject to short- and long-term uncertainties. Furthermore, increased
environmental consciousness in recent years and the efforts for pollution preven-
tion necessitate chemical manufacturing plants to comply with stricter environ-
mental regulations and to reduce waste. Therefore, the breadth of traditional
process design approaches should be extended to include green engineering prin-
ciples early in design (1,2). The reason is because the decisions made earlier dur-
ing the development of a chemical process affect later stages, eg, material and
equipment selection, pilot plant studies, and financial analysis and because the
opportunities for reducing environmental and health impacts of a process
diminishes. Therefore, unlike traditional process design, where engineers are
seeking only low cost options, contemporary process design approaches include
environmental and health impacts, process performance indexes, eg, risk, relia-
bility, safety, and flexibility, as well as controllability and profitability into deci-
sion making. Sampling plays an important role in defining and quantifying these
objectives. Further, nowadays process design is just not restricted to process
simulation, but includes steps, eg, discovery, chemical synthesis on one end,
and management, planning, and control on the other end. As the breadth of
this design framework is extended, uncertainties in the model increase and effi-
cient algorithms and tools are needed to address this problem. Sampling is an
important component of these algorithms and tools.

Figure 1 shows an overview of this integrated framework proposed (2),
which applies green engineering principles at every stage of process design
and development. The first stage in process development is discovery, where che-
micals and materials are selected and synthesized in a laboratory or using com-
putational chemistry methods. These methods use Monte Carlo methods based
on sampling of the molecular configurational space.

Computer-aided molecular design (CAMD) is a commonly used technique
for chemical synthesis where the reverse use of group contribution methods is
employed to select materials with desired physical, chemical, environmental,
and biological properties. The next stage of chemical synthesis is process synth-
esis, where a chemical process is developed by choosing various unit operations
and their connections. A flowsheet of the proposed plant is generated and process
simulators are used to compute mass and energy flows for the process to predict
its behavior if it was constructed.

Uncertainties are commonly present in chemical and process synthesis due
to insufficient experimental data and the lack of accurate models for represent-
ing the physical and chemical phenomena. Uncertainties are also encountered
over the life cycle of the plant that affect decisions related to plant operations,
eg, process control, production planning and scheduling, supply chain manage-
ment, reliability, and maintenance of the plant.

For example, model uncertainty and external disturbances are important
concerns in designing control systems, which are used to minimize deviations
from the nominal process conditions and maintaining the safe operation of the
plant. Probabilistic approaches and sampling techniques are used commonly
to ensure robustness to these model uncertainties. On the other hand, off-line
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Fig. 1. Integrated framework for environmentally conscious process development and
design under uncertainty (2).

quality control is used to design products and processes that are robust to
uncontrollable variation at the design stage. Parameter design strategy is used
for this purpose and sampling techniques are employed to propagate the effects
of input variability on outputs. The choice of an efficient sampling technique is
very important for efficient off-line quality control.

For multipurpose/multiproduct batch plants, optimal production planning
and scheduling is important in order to be competitive in a just-in-time produc-
tion environment. The scheduling problem assigns a sequence of tasks to each
equipment over time, according to inventory restrictions and customer demands.
The production schedule should be able to accommodate changing product
demands, equipment shutdowns and unexpected orders. An extension of the
scheduling problem is supply chain management that deals with a complex net-
work of suppliers, plant, warehouses, distribution centers, and customers. Exam-
ples of uncertainties in supply chains include fluctuations in product prices,
demands, or production yields.

In order to increase operational effectiveness and profits, and to save on lost
production and costs, chemical plants need to operate with high process reliability
and availability. Therefore, reliability issues need to be addressed at the conceptual
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design stage. Optimal maintenance schedules for the plant need to be determined to
increase reliability and availability while maintaining profitability. Uncertainties in
equipment availability profoundly affect the profitability of the plant.

Uncertainty analysis and sampling techniques also play an important role
in risk assessment and safety. Risk management is a decision making process
that is used to reduce the financial and production risk for a business. Environ-
mental risk assessment and financial risk assessment are commonly applied to
chemical manufacturing processes. Environmental risk is associated with the
toxicity of materials and the effect of hazardous materials on a human population
or an entire ecosystem. Financial risk on the other hand, is concerned with pri-
cing decisions and demands. Probability distributions and sampling techniques
are frequently used in risk and policy analysis.

The most commonly used sampling technique for uncertainty analysis is
Monte Carlo sampling, which is based on a pseudo-random number generator.
This sampling technique has probabilistic error bounds and large sample sizes
are needed to achieve the desired accuracy. Variance reduction techniques
have been applied to circumvent the disadvantages of Monte Carlo sampling.

2. Sampling Techniques

Sampling is a statistical procedure that involves selecting a limited number of
observations, states, or individuals from a population of interest. A sample is
assumed to be representative of the whole population to which it belongs. Instead
of evaluating all the members of the population, which would be time consuming
and costly, sampling techniques are used to infer some knowledge about the
population.

Sampling techniques could be divided into two groups: probability sampling
and nonprobability sampling. In probability sampling, samples are selected based
on the theory of probability, which means that each possible set of unit is assigned
a probability of selection. The samples are selected by a random process and the
confidence intervals for the estimates are known. On the other hand, nonproba-
bility sampling does not involve random selection of individuals. An example of
this is quota sampling, where the population is first divided into subpopulations
and subjects are selected according to judgment or convenience. In this case, the
sampling error cannot be determined by probabilistic techniques.

For a good sampling technique, all physically reasonable values of the input
and output variables should have some chance of occurring and no region of the
population should be excluded. Furthermore, the estimates should be as close as pos-
sible to the real values of the quantities being estimated. A good sampling technique
also allows an assessment of the relative importance of each input variable.

Probabilistic sampling techniques are based on Monte Carlo methods and
are most relevant to this article. They are described in this section.

2.1. Monte Carlo Sampling. One of the simplest and most widely used
methods for sampling is the Monte Carlo method. Monte Carlo methods are
numerical methods that provide approximate solutions to a variety of physical
and mathematical problems by random sampling. The name Monte Carlo,
which was suggested by Nicholas Metropolis, takes its name from a city in the
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Monaco principality, which is famous for its casinos, because of the similarity
between statistical experiments and the random nature of the games of chance,
eg, roulette.

Monte Carlo methods were originally developed for the Manhattan Project
during World War II to simulate probabilistic problems related random neutron
diffusion in fissile material. Although they were limited by the computational
tools of that time, they became widely used in many branches of science after
the electronic computers were built in 1945. The first publication that presents
the Monte Carlo algorithm is probably by Metropolis and Ulam (3).

The basic idea behind Monte Carlo simulation has been that input samples
should be randomly generated in order to describe a random output. In the crude
Monte Carlo approach, a value is drawn at random from the probability distribu-
tion for each input, and the corresponding output value is computed. The entire
process is repeated n times producing n corresponding output values. These
output values constitute a random sample from the probability distribution
over the output induced by the probability distributions over the inputs. The sim-
plest distribution that is approximated by the Monte Carlo method is a uniform
distribution U(0,1) with n samples on a k-dimensional unit hypercube. One
advantage of this approach is that the precision of the output distribution may
be estimated using standard statistical techniques. On average, the error ¢ of
approximation is of the order O(N~Y2). One remarkable feature of this sampling
technique is that the error bound is not dependent on the dimension k. However,
this bound is probabilistic, which means that there is never any guarantee that
the expected accuracy will be achieved in a concrete calculation.

The success of a Monte Carlo calculation depends on the choice of an appro-
priate random sample. The required random numbers and vectors are generated
by the computer in a deterministic algorithm. Therefore, these numbers are
called pseudorandom numbers or pseudorandom vectors. One of the oldest and
best known methods for generating pseudorandom numbers for Monte Carlo
sampling is the liner congruential generator (LCG), first introduced by Lehmer
(4). The general formula for a linear congruential generator follows:

I,=(a-I,-1 +c)mod m (1)

In this formula, a is the multiplier, c is the increment that is typically set to
zero, and m is the modulus. These are preselected constants. The proper choice of
these constants is very important for obtaining a sample that performs well in
statistical tests. One other preselected constant is the seed I,, which is the
first number in the output of a linear congruential generator. The following
example shows how to generate pseudorandom numbers.

Example 1: An example of a library that generates pseudorandom num-
bers combines three generators (5):

X, = (171 - X,,_;)mod 30269
Y, = (172 - Y,_1)mod 30307 2)
Z, = (170 - Z,_1)mod 30323
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Fig.2. (a) 100 pseudorandom numbers on a unit square, (b) 250 pseudorandom numbers
on a unit square obtained by the linear congruential generator developed by Wichmann
and Hill (5).

The random number is calculated from the formula:
temp = X,,/30629.0 + Y,,/30307.0 + Z,,/30323.0 (3)
random = temp — int(temp) (4)

Pseudorandom numbers of different sample sizes on a unit square gener-
ated using this method is given in Figure 2. From this figure, it can be seen
that pseudorandom number generator produces samples that may be clustered
in certain regions of the unit square and does not produce uniform samples.
Therefore, in order to reach high accuracy, larger sample sizes are needed,
which adversely affects the efficiency of this method.

Monte Carlo method provides approximate solutions to a variety of mathe-
matical problems. A classic use of Monte Carlo methods is for the evaluation of
definite integrals, particularly multidimensional integrals with complicated
boundary conditions. A simple example for the estimation of © and how the sam-
ple size affects the accuracy of estimation is given below in Example 2.

r
Area(circle) - r2 /
X

4 = 2><4=TC

Fig. 3. A procedure for the estimation of =.
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Fig. 4. Estimation of © by Monte Carlo sampling.

Example 2: The value of & could be obtained by dividing the area bounded
by the circle to the area bounded by the square shown in Figure 3 and multiply-
ing this value by 4.

The value of & can be estimated by Monte Carlo sampling. Two uniform ran-
dom samples U(0,1) could be generated to place on a unit square. The number of
sample points bounded by the circle could be divided by the number of points
bounded by the square and multiplied by 4 to obtain the estimation.

In Figure 4, an illustration of this procedure is shown for 100 Monte Carlo
samples. The value of © estimated by these 100 samples is 3.04. As the sample
size increases, the estimations come closer to the actual value of n, which is
3.1415 as shown in Figure 5.

2.2. Variance Reduction Techniques. For increasing the efficiency of
Monte Carlo simulations and overcome the disadvantages, eg, probabilistic error
bounds, variance reduction techniques have been developed.
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Fig. 5. Effect of sample size on the estimation of =.
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James (6) has divided variance reduction techniques into four categories.
However, note that these categories are not all inclusive. Further, some of the
sampling techniques are overlapping between categories.

The first category of sampling techniques extract from a run more informa-
tion than immediately evident on the parameter value. An example of this is the
control variate sampling, which is one of the most versatile variance reduction
techniques. Control variates exploit information about the errors in estimates of
known quantities to reduce the error in an estimate of an unknown quantity (7).
They are best able to estimate the mean of the outcome distribution, but also can
help in variance estimation. Control variates are set up in order to use a simplified
version of a model. One of the problems with control variates is the selection of
effective controls. Also, control variates assume a specific probabilistic structure
for the simulation output process, usually joint normality of the response and
the control variates, and this underlying assumption may not always be satisfied
(8). These problems restrict the widespread use of control variates. Therefore, it is
not surprising that this method is not percolated in process systems engineering.

Sampling techniques in the second category make sure that each individual
run is unbiased with respect to the mean outcome measure being estimated. For
example, in antithetic sampling, a negative correlation is introduced between
two unbiased estimators of a variable X (9). This technique is applied if there
is only one important variable within the model, which is sampled once during
a run. Similar to control variate sampling, so far we have not seen any applica-
tion of this method in chemical engineering literature.

The sampling approaches for variance reduction that are used more fre-
quently for chemical engineering applications are importance sampling, Latin
Hypercube Sampling (LHS) (10,11), Descriptive Sampling (12), and Hammersley
Sequence Sampling (HSS) (13,14). The latter technique belongs to the group of
quasi-Monte Carlo methods that were introduced in order to improve the effi-
ciency of Monte Carlo methods by using quasirandom sequences that show better
statistical properties and deterministic error bounds. These commonly used sam-
pling techniques are described below with examples.

Importance Sampling. Importance sampling, which may also be called
biased sampling, is a variance reduction technique for increasing the efficiency
of Monte Carlo algorithms. Monte Carlo methods are commonly used to integrate
a function F over the domain D:

/ F(x)dx (5)
D

If random numbers are drawn from a normal distribution, information is
spread over the interval being sampled. However, if a nonuniform (biased)
distribution G(x) is used, which draws more samples from the areas that make
a substantial contribution to the integral, the approximation of the integral
will be more accurate, and the process will be more efficient. This is the basic
idea behind importance sampling, where the approximated integral is given by

1 N F(x;)
1= N2 G ©

=
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Importance sampling is crucial for sampling low probability events. The
most critical issue for the implementation of importance sampling is the choice
of the biased distribution that emphasizes the important regions of the input
variables. One of the examples of importance sampling is the Metropolis criterion
used in molecular simulations (15). In molecular simulations the configurational
phase space is explored and this involves the evaluation of a multidimensional
integral over 3N degrees of freedom. The crucial feature of the Metropolis
approach is that it generates a Markov chain of states and it biases the genera-
tion of configurations toward those that make the most significant contribution
to the integral. Specifically, it generates states with a probability exp
(=AV /kgT), where AV is the change in energy, kg is the Boltzmann factor,
and T is the temperature. This algorithm allows the low energy configurations
to be sampled more efficiently, where the Boltzmann factor has an appreciable
value. As a result, thermodynamic properties of fluids could be calculated more
accurately. A simple example for the application of importance sampling for esti-
mation of a simple integral is given below.

Example 3: Let us assume that one would like to estimate the integral:
I= / x? exp *dx (7
0

This function is not possible to integrate analytically, but its value is known
to be \/n/4 = 0.44311328....

As seen from Figure 6, the value of this function decreases rapidly when x is
greater than ~3.5. Therefore, there are only a small number of input arguments,
x, where the integral has an appreciable value.

If a Monte Carlo integration is applied to estimate this integral, the domain
of this integral can be uniformly sampled by using a uniform distribution between
0 and 1000. Then this integral can be evaluated using the uniform intervals.

However, it is known that this integral has only an appreciable value at a
specific interval. Because of that, if a uniform sample is used, most of the points
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Fig. 6. The function f(x) = x? exp(—x2).
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Fig. 7. Lognormal distribution with a mean p = 1 and a standard deviation of ¢ = 1.7.

will be from areas that correspond to values where the integral has a very small
value. Therefore, a nonuniform distribution function can be used instead for
sampling. If a distribution like log-normal distribution is chosen, the number
of samples required to obtain an accurate estimation will be less. For example,
consider a lognormal distribution with mean p = 1 and a standard deviation of
o = 1.7. This is shown in Figure 7. It is seen that, if a lognormal distribution is
used, there will be more sampling from the areas of importance that make a sig-
nificant contribution to the integral.

The estimation of this integral using a uniform sample and a lognormal
sample is compared in Table 1. The integral is accurately estimated using impor-
tance sampling after only 100 samples. However, it requires 10,000 samples with
the crude Monte Carlo method where a uniform distribution is used.

Stratified Sampling. Stratification is the grouping of the members of a
population into equal or unequal probability areas (strata) before sampling.
The strata must be mutually exclusive, which means that every element in the
population must be assigned to only one stratum. Also, no population element is
excluded. It is required that the proportion of each stratum in the sample should
be the same as in the population.

Latin hypercube sampling is one form of stratified sampling that can yield
more precise estimates of the distribution function (10), and therefore reduce the
number of samples required to improve computational efficiency. It is a full

Table 1. The Estimation of the Integral f(x) = x2 exp(—x2)By Using Uniform
Random Sampling and Importance Sampling

n Uniform random sampling Importance sampling
10 0 0.11054
100 0.00095 0.44363
1,000 0.07585 0.44312

10,000 0.44131 0.44311
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stratification of the sampled distribution with a random selection inside each
stratum. In LHS, the range of each uncertain parameter X; is subdivided into
nonoverlapping intervals of equal probability. One value from each interval is
selected at random with respect to the probability distribution in the interval.
The n values thus obtained for X; are paired in a random manner (ie, equally
likely combinations) with n values of X5. These n values are then combined
with n values of X3 to form n triplets, etec, until n k-tuplets are formed.
An example is given to help clarify how intervals are formed.

Example 4: Consider the generation of a LHS of size n = 5 with two input
variables. Let us assume that the first random variable X; has a normal distri-
bution with a mean value of p = 8 and a standard deviation of c = 1. The end-
points of the intervals are easily determined based on the parameters p and o2
The intervals are shown in Figure 8 on both the density function and the
cumulative distribution function. Each interval corresponds to a 20% probability.

It is also assumed that, the second random variable X, has a uniform
distribution on the interval from 5 to 10. Therefore, one can easily determine
the corresponding intervals in terms of both the density function and the cumu-
lative distribution function as shown in Figure 9.

The next step is to obtain a LHS to choose specific values of X; and X5 in
each of their five respective intervals. This selection is done in a random manner
with respect to density in each interval. Next, the selected values of X; and X,
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Fig. 8. Intervals used with a LHS of size n = 5 in terms of the density function and
cumulative distribution function for a normal random variable X;.
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are paired randomly to form the two-dimensional (2D) input vectors of size 5.
This pairing is done by a random permutation of the first five integers with
each input variable.

For example, two random permutations of the integers (1, 2, 3, 4, 5) can be
considered:

Permutation 1: (2, 5, 3, 1,4) Permutation2: (4, 3,2, 5, 1)

These can be used as interval numbers for X; (Permutation 1) and X, (Per-
mutation 2). In order to get the specific values of X; and X5, n = 5 random num-
bers are randomly selected from the standard uniform distribution. If these
values are denoted by U,,, where m =1, 2, 3, 4, 5. Each random number U,,
is scaled to obtain a cumulative probability P,,, so that each P,, lies within the

mth interval:
1 m—1

In Tables 2 and 3, possible selections of LHS of size 5 for random variables
X; and X, are presented, respectively. Therefore, if the two permutations (Per-
mutation 1 and 2) are applied to choose the corresponding intervals for X; and
X, as given in Table 4, the pairing operation can be performed. This pairing
process is illustrated in Figure 10. From this figure, it can be seen that all the
intervals of X; and X, have been sampled.
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Table 2. Possible Selection of Values for a LHS of Size 5 for the Random Variable Xj,
Normally Distributed with Mean p = 5and o = 1

Interval Uniform Scaled probabilities Corresponding
number, m (0,1) P, =U,(0.2) + (m —1)"(0.2) U(5,10)
1 0.5832 0.1166 6.808
2 0.8125 0.3625 7.648
3 0.2980 0.4596 7.899
4 0.8470 0.7694 8.737
5 0.4369 0.8874 9.213

Table 3. Possible Selection of Values for a LHS of Size 5 for the Random Variable X,
Uniformly Distributed between 5 and 10

Interval Uniform Scaled probabilities Corresponding
number, m 0,1 P, =Un,(0.2) + (m —1)"(0.2) U(5,10)

1 0.3370 0.0674 5.337

2 0.1678 0.2336 6.168

3 0.8419 0.5684 7.842

4 0.4372 0.6874 8.437

5 0.8127 0.9625 9.813

Latin hypercube sampling was designed to improve the uniformity proper-
ties of Monte Carlo methods, since it was shown that the error of approximating
a distribution by finite sample depends on the equidistribution properties of the
sample used for U(0,1), and the relationship between successive points in a sam-
ple or its randomness or independence is not critical (16).

In median Latin hypercube sampling (MLHS), which is a variant of LHS,
the midpoint of the intervals is chosen to sample the uncertain variables. This
sampling is similar to the Descriptive Sampling described by Saliby (12).

The main drawback of this stratification scheme in LHS and MLHS is that
it is uniform in one dimension (1D) and does not provide uniformity properties in
k dimensions. Sampling based on quadrature (17), cubature techniques (18), or
collocation techniques (19) face similar drawback. These sampling techniques

Table 4. Application of Random Permutations to Choose Intervals for X; and X, for
Pairing

Permutation 1 Permutation 2

(interval used for X;) X (interval used for X5) X,

2 7.648 4 8.437
5 9.213 3 7.842
3 7.899 2 6.168
1 6.808 5 9.813
4 8.737 1 5.337
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Fig. 10. Two-dimensional representation of a possible LHS of size 5 using X; and X,.

perform better for lower dimensional uncertainties. Therefore many of
these sampling techniques use correlations to transform the integral into 1D
or 2D. However, this transformation is possible only for limited distribution
functions when the uncertain variables are tightly correlated. For highly corre-
lated samples, similar to what has been observed in thermodynamic phase equi-
libria, a sampling technique based on confidence region estimates can be used
(20).

Quasi-Monte Carlo Methods. Quasi-Monte Carlo methods seek to con-
struct a sequence of points that perform significantly better than Monte Carlo,
which has an average case of complexity of the order of 1/¢%. For a suitably chosen
set of samples, the quasi-Monte Carlo method provides a deterministic error
bound of the order N~1(log N)* ! without any strong assumptions about the inte-
grand. Some well-known quasi-Monte Carlo sequences are Halton, Hammersley,
Sobol, Faure, Korobov, and Neiderreiter (21). The choice of an appropriate quasi-
Monte Carlo sequence is a function of discrepancy. The deterministic upper and
lower error bounds of any sequence for integration are expressed in terms of the
discrepancy measure. Discrepancy is a quantitative measure for the deviation of
the sequence from the uniform distribution. Therefore, it is desirable to choose a
low discrepancy sequence. The Halton (22) and Hammersley (23) are some exam-
ples of low discrepancy sequences.

Hammersley sequence sampling is an efficient sampling technique devel-
oped by Diwekar and co-workers (13,14,24) based on quasirandom numbers.
Hammersley sequence sampling uses Hammersley points to uniformly sample
a unit hypercube and inverts these points over the joint cumulative probability
distribution to provide a sample set for the variables of interest.
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The design of Hammersley points is given below. Any integer n can be writ-
ten in radix-R notation (R is an integer) as follows:

n=npNm-1...N2N1No (9)
n=nog+nR+nR%+...+n,R™ (10)
where m =[loggpn]| = [Inn/In R] (the square brackets denote the integral part). A
unique fraction between 0 and 1 called the inverse radix number can be

constructed by reversing the order of the digits of n around the decimal point
as follows:

¢g(n) =noning...ny = noR'+nR2+.. . +n,R ™! (11)

The Hammersley points on a k-dimensional cube are given by the following
sequence:

Zr(n) = (Z%,(pRl(n),(pRz(n), .. '7(PR;¢71(”)) n=12,...,N (12)

where R, Rs, ..., R;_; are the first 2—1 prime numbers. The Hammersley
points are xp(n) =1—Z2p(n). Example 5 illustrates Hammersley points are
generated.

Example 5: Two-dimensional Hammersley points are generated with a
sample size of 100. In this case, N = 100 and & = 2. The procedure for generating
Hammersley points is given below for the first 10 points in Table 5.

As shown in Figure 11, Hammersley sequence sampling technique uses an
optimal design scheme for placing n points on a k-dimensional hypercube. This
scheme ensures that it is more representative of the population showing unifor-
mity properties in multidimensions, unlike Monte Carlo, Latin hypercube and its
variant MLHS techniques. A qualitative picture of the uniformity properties of
the different sampling techniques on a unit square is presented in Figure 12.
It is clearly observed that HSS shows better uniformity than other stratified
sampling techniques, eg, LHS, which are uniform along a single dimension
only and do not guarantee a homogeneous distribution of points over the multi-
variate probability space.

One of the main advantages of Monte Carlo methods is that the number of
samples required to obtain a given accuracy of estimates does not scale exponen-
tially with the number of uncertain variables. The HSS preserves this property of
Monte Carlo. For correlated samples, the approach used by Kalagnanam and
Diwekar (13) uses rank correlations (11) to preserve stratified design along
each dimension. Although this approach preserves the uniformity properties of
the stratified schemes, the optimal location of the Hammersley points is per-
turbed by imposing the correlation structure. Figure 13 illustrates the effect of
imposing a correlation structure on the sample sets. The HSS technique has
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Table 5. Generation of 10 Hammersley Points in 2D

n zp(n) ngy - radix @y (n) -inverse radix xp(n) =1 — zx(n)
0 (0, 95(0)) 0 0/2 =0 (1-0, 1-0)(1.0, 1)
1 (0.01, 9y(1)) 1 1/2' =05 (1-0.01, 1-0.5)

(0.99, 0.5)
2 (0.02, 02(2)) 10 %4—2—12 =0.25 (1-0.02, 1-0.25)
(0.98, 0.75)
3 (0.03, 92(3)) 11 2—11+% =0.75 (1-0.03, 1-0.75)
(0.97, 0.25)
0 0 1
4 (0.04, 92(4)) 100 §+?+? =0.125 (1-0.04, 1-0.125)
(0.96, 0.875)
1 0 1
5 (0.05, ©2(5)) 101 §+§+¥ =0.625 (1-0.05, 1-0.625)
(0.95, 0.375)
0 1 1
6 (0.06, 92(6)) 110 54—?4—? =0.375 (1-0.06, 1-0.375)
(0.94, 0.625)
1 1 1
7 (0.07, @2(7) 111 ﬁ-k?—i-% =0.875 (1-0.07, 1-0.875)
(0.93, 0.125)
0 0 o0 1
8 (0.08, 2(8)) 1000 §+?+2—3+? =0.0625 (1-0.08, 1-0.0625)
(0.92, 0.9375)
1 0 0 1
9 (0.09, 92 (9) 1001 §+?+273+? = 0.5625 (1-0.09, 1-0.5625)
(0.91, 0.4375)
0 1 0 1
10 (0.1, 02(10)) 1010 §+§+2—3+§ =0.3125 (1-0.1, 1-0.3125)

(0.90, 0.6875)

better performance than LHS and crude Monte Carlo sampling techniques, and
is at least 3—100 times faster for convergence (13).

A variant of the HSS sampling technique is the Latin hypercube Hammersley
sampling (LHSS) (25). The aim of this sampling technique is to better utilize the
1D uniformity property of LHS and multidimensional uniformity property of
HSS by coupling them. One dimensional uniformity analysis for Monte Carlo
sampling, HSS, and LHSS is shown in Figure 14.

Other variants of HSS are Halton sequence sampling or shifted Hammers-
ley, where the first variable is shifted and leaped Halton or Hammersley, where
some of the cycles of these sequences are eliminated to improve efficiency for
higher dimensional problems (24,26). As, the number of dimensions increase,
the quasirandom sequences lose their uniformity properties. Therefore, to
increase their performance, different quasirandom sequences could be combined
and leaping procedure could be applied.
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Parallelization of Monte Carlo and Quasi-Monte Carlo Methods. Monte
Carlo and quasi-Monte Carlo sampling techniques discussed above are used to
solve a variety of problems in computational chemistry as well as finance or
economics, where complex models are used. Therefore, parallel computing to
speed up calculations for these complex models is essential and these sampling
techniques should be implemented in a parallel computer architecture, where
independent simulations can be performed on different processors.

For reasons of efficiency, the random numbers generated for a parallel
Monte Carlo simulation using different processors should be uncorrelated and
should be generated independently. There are two basic parallelization techni-
ques for generating random numbers. The first method assigns different random
number generators for different processors. The second method assigns different
substreams of one large random number generator to different processors. When
the first method is used, it is possible that there are unknown correlations
between the different random number generators in use. Alternatively, if the
same random number generator with different parameters is used, one could
also encounter similar problems. Hellekalek (27) addressed these issues related
to random number generators for a parallel computer architecture with
examples.

There are two variations of the second method. The first approach is a
“leap-frog” technique, where a substream (x,z;) of lag L of the original sequence
is assigned to the j-th processor, where 0 <j <L—1. The second approach is a
“splitting” technique, where the original sequence is partitioned into L consecu-
tive blocks. Each of the processors is assigned a different block and each block is
defined by a unique seed. Both of these methods should be used with caution
when the number of dimensions or the sample size is increased.

Mascagni provided a review of the parametrized versions of the pseudoran-
dom number generators for parallel Monte Carlo applications, eg, linear con-
gruential generators, linear matrix generators, shift-register generators,
lagged Fibonacci generators, and inversive congruential generators (28).

Quasirandom sequences have also been used in parallel computing in
recent years. In order to use quasirandom numbers in parallel, one can break
up a single quasirandom number sequence into nonoverlapping blocks to be
used in parallel processing elements. Comparison of parallel pseudorandom
numbers and Sobol sequences has shown that the same kind of accuracy is
achieved with the use of a quasirandom sequence in parallel. However, quasiran-
dom sequence (where a block-based parallelization is used) converges to the same
result in considerably less amount of time (29). Schmid and Uhl (30) also studied
the parallelization of quasirandom sequences called the (¢,s)-sequences. They
have concluded that the block-based parallelization performs much better com-
pared to leaping parallelization for numerical integration. In leaping paralleliza-
tion, each processing element skips those points handled by other processing
elements (leap-frogging).

2.3. Bayesian and Adaptive Methods. Bayesian probability theory
was originally developed by Bayes (31). Bayesian and adaptive methods are
used when the probability functions are not very accurate. The Bayesian method
uses two steps. The first step is to identify the conceptual models and the distri-
bution of model parameters. In the second step, the model results are compared
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with existing observations through a structured probabilistic methodology. In
the Bayesian context, a probability represents a degree-of-belief based on all
the relevant information at hand. Classical statistical approaches are not very
effective in predicting low frequency, rare, but consequential (eg, accidents or
chemical spills) events. Bayesian theory could be applied to these cases (32). A
Bayesian approach is also used for sensor fault detection (33).

One of the most important applications of Bayesian methods is to use
Bayesian inference for model parameter estimation. This method uses the
prior information about the parameters and the likelihood function to find the
mode of the posterior distribution (34).

Bayesian Inference. Bayes theorem (31) states that the posterior
probability distribution for an event is proportional to the prior distribution
(knowledge) multiplied by the likelihood. If we denote D as the observed data
and 0 as the model parameters, we can write

P(D,0) = P(D|0)P(0) (13)

In this equation, P(D,0) is the joint probability distribution over all random
quantities. This distribution is composed of two parts: a prior distribution P(0)
and a likelihood P(D|6). In order to find the distribution of 6 conditional on D,
the Bayes theorem is used

P(® ) (D]6)

POD) = Tp6)p(D]0)d0

(14)

This is called the posterior distribution of 8. The posterior expectation of a func-
tion f(0) is

[ £(6)P(6)P(D|0)d0
ELFOIP) == p6)p(D[6)d6

(15)

It is very difficult to integrate this expression and find E[ f(0)|D] especially
in high dimensions, since for most applications the analytical solution is not
available. One of the numerical approaches that have been used is the Markov
chain Monte Carlo (MCMC) method described below.

Markov Chain Monte Carlo Method. Let X be a vector of k£ random vari-
ables with a distribution = (.). In Bayesian inference, n (.) will be a posterior dis-
tribution. Then, the task is to evaluate expressions of the form:

Bl o) = L Em (16)

A Monte Carlo integration evaluates E[f(X)] by drawing samples
{X:,t=1,...,n} from = (.) and approximates the integral by

~ T3 FX) a7)
=1
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The sample averages are used to approximate the expectations.
Markov chain Monte Carlo draws these samples by running a cleverly
constructed Markov chain for a long time. A Markov chain can be defined as fol-
lows.

Suppose a sequence of random variables {Xy, X;,Xs,..., } is generated such
that at each time step, the next state is sampled from a distribution P(X;,1|X;),
which depends only on the current state of the chain X,. This sequence is called a
Markov chain and P(X;;1|X;) is called the transition kernel of the chain. One of
the transition kernels or updating schemes used in MCMC is the Gibbs transi-
tion kernel (35), which is a special case of the general framework of Metropolis
and co-workers (36) and Hastings (37).

Many important implementation issues need to be considered for MCMC
methods. These include the transition mechanism for the chain, the number of
chains to be run, and their length and the choice of starting values. These issues
are discussed in a review by Brooks (38). The MCMC methods and their imple-
mentation were also discussed in a textbook by Gilks and co-workers (39). There
is also software called BUGS (Bayesian inference Using Gibbs Sampling)
available at the World Wide Web (http://www.mrc-bsu.cam.ac.uk/bugs/) for
analysis of complex statistical models using MCMC methods.

2.4. Other Sampling Techniques. Some other examples of non-Monte
Carlo sampling techniques include, systematic sampling, cluster sampling, quota
sampling, and multistage sampling. These sampling techniques are briefly
described below.

Systematic Sampling. Systematic sampling is the selection of every nth
element from a sampling frame. This sampling technique is also called the inter-
val sampling, which means that there is a gap or interval between each selection.
This technique is used in industry for quality control where a manufacturer
might want to test an item from a production line at certain time intervals to
make sure that it satisfies the product specifications, and the equipments and
machines are working properly. A random starting point is selected and the sam-
pling interval is chosen in a way that does not create a pattern that would threa-
ten randomness. More information about systematic sampling can be found in
Madow and Madow (40).

Cluster Sampling. 1In cluster sampling, the entire population is divided
into clusters, or groups and a random sample is selected from these clusters.
When the researcher does not have enough information about the individual
members of a population, but can get a complete list of the groups or clusters,
this sampling technique would be useful (41-43).

Quota Sampling. In quota sampling, the population is first divided into
mutually exclusive subpopulations, just as in stratified sampling. Then the sub-
jects are selected according to judgment or easy availability from each subpopu-
lation. This sampling technique is often used in opinion polling and market
research. This is not a random sample; therefore, statistical methods cannot be
applied to measure the sampling error. A discussion on the validity of inferences
made from quota sampling was presented by Smith (44).

Multistage Sampling. This sampling technique involves the selection of a
sample in at least two stages. In the first stage large groups of clusters are
selected and in the second stage population units are selected from the clusters
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to derive a final sample. For an application of multistage sampling in epidemiol-
ogy, refer to Refs. 45 and 46.

These sampling techniques are mostly designed for convenience and effi-
ciency. However, they are not as accurate and many times the sampling error
cannot be estimated by classical statistical techniques. They are more frequently
used in areas such as market research, polling, or interviewing to infer some
knowledge about a population. They are also encountered in epidemiology stu-
dies, where the causes and prevalence for certain diseases are statistically ana-
lyzed. However, they do not have a wide applicability in process systems
engineering.

3. Uncertainty Analysis and Stochastic Modeling

The role of sampling in uncertainty analysis is indisputable and encompasses all
application areas in process design, operation, and control. The uncertainties
commonly encountered in chemical systems can be divided into two groups
(47): (1) static uncertainties and (2) dynamic uncertainties.

3.1. Static Uncertainties. Static uncertainties are normally repre-
sented by probability distributions. Inclusion of uncertainties in a deterministic
model results in a stochastic model. Stochastic modeling is an iterative procedure
that consists of these four steps (48), as shown in Figure 15.

1. Uncertainty quantification that involve specifying uncertainties in key
input parameters in terms of probability distributions.

2. Sampling distribution of the specified parameter in an iterative fashion.
3. Propagating the effects of uncertainties through the model.
4. Applying statistical techniques to analyze the results.

In the first step of stochastic modeling framework, uncertainties in key
input variables are represented by probability distribution functions. An exam-
ple of uncertainty characterization and quantification by probability distribu-
tions was presented by Kim and Diwekar (49) in a computer-aided molecular

Probability
Distribution of Uncertainty
Outputs Stochastic Distributions
/ Modeler ‘\
Output )
Functions Uncertain

Variable Sample

Fig. 15. Stochastic modeling framework.
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Fig. 16. Probability density functions for uncertainty factors for organic/water, water/
organic, organic/organic families (50).

design (CAMD) problem. Discrepancies between the experimental data for pre-
dicting a thermodynamic property and the models are commonly encountered in
CAMD. For example, Figure 16 shows the uncertainties in >1800 interaction
parameters present in the UNIFAC activity coefficient model to predict solvent
selection objectives for acetic acid separations. Uncertainty factors (UFs) were
established as the ratio between the experimental and the calculated values of
activity coefficients at infinite dilution y* as defined in equation 18. Further-
more, uncertainty factors were divided into three categories based on the type
of family: organic/water (lognormal distribution), water/organic (normal distri-
bution) and organic/organic (lognormal distribution).

UF = o (18)

Yeale

The type of distribution for an uncertain variable is a function of the
amount of data available and the characteristic of the distribution function.
The simplest distribution for an uncertain variable is a uniform distribution,
which has a constant probability. This means that the uncertain variable can
take any value within an interval [a,b] with equal probability. On the other
hand, if the uncertain variable is represented by a normal (Gaussian) distribu-
tion, there is a symmetric, but equal probability, that the value of the uncertain
variable will be above or below a mean value. In log-normal or some triangular
distributions, there is a higher probability that the value of an uncertain variable
will be on one side of the median, resulting in a skewed shape. A beta distribution
provides a wide range of shapes and is a very flexible means of representing
variability over a fixed range. In some special cases, user-supplied distributions
are used, eg, chance distribution. Different examples of probability distributions
are given in Figure 17.
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Once probability distributions are assigned to uncertain parameters, the
next step is to perform a sampling operation from the uncertain parameter
domain. Then, the uncertainties are propagated through the model. The stochas-
tic modeler assigns the specified distributions to the input parameters and using
sampling methods described in the previous section (eg, Monte Carlo, LHS,
HSS), the sampled values of each uncertain variable are passed through the
model. After a model simulation is run, the output variables of interest are col-
lected. The simulation is then repeated for a new set of samples selected from the
probabilistic input distributions. After all samples or observations have gone
through the cycle for a specified number of times (typically 20—100 or more,
depending on the accuracy sought by the user), the outputs are collected in
terms of cumulative probability density functions.

3.2. Dynamic Uncertainties. Dynamic uncertainties are also ubiqui-
tous in chemical systems, especially for batch processes. Due to the dynamic nat-
ure of these processes, even some of the static uncertainties are translated into
dynamic uncertainties. An example of this is shown in Figure 18. This figure
shows how the uncertainties in activity coefficients predicted by the UNIFAC
method affect the time-dependent relative volatility profile in a batch distillation
column (47). Despite this fact, a generalized method of treatment for dynamic
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Fig. 18. (a) The uncertainties in activity coefficients predicted by UNIFAC. (b) The
effect of static uncertainties on the relative volatility profile on each plate in a batch
distillation column (47).

uncertainties for chemical systems was presented recently (47,51,52). This
method is based on Ito processes and real options theory from finance literature.

Ito processes are a large class of continuous time stochastic processes. One
of the simplest examples of a stochastic process is the random walk process. The
Wiener process, also called a Brownian motion, is a continuous limit of the ran-
dom walk and serves as a building block for Ito processes, through the use of
proper transformations.

A Wiener process satisfies three important properties. First, it satisfies the
Markov property. The probability distribution for all future values of the process
depends only on its current value. Second, it has independent increments. The
probability distribution for the change in the process over any time interval is
independent of any other time interval (nonoverlapping), and third, changes in
the process over any finite interval of time are normally distributed, with a
variance that is linearly dependent on the length of time interval, dt. The general
equation of an Ito process is given below:

dx = a(x,t)dt + b(x,t)dz (19)

In equation 19, dz is the increment of a Wiener process, and a(x,¢) and
b(x,t) are known functions. There are different forms of a(x,t) and b(x,¢) for
various Ito processes. In this equation, dz can be expressed by dz = &Vdt,
where ¢; is a random number drawn from a unit normal distribution.
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The simplest generalization of equation 19 is the equation for Brownian
motion with drift given by

dx =odt+odz (20)

where o is called the drift parameter and o is the variance parameter.

Other examples of Ito processes are the geometric Brownian motion with
drift given in equation 21 and the geometric mean reverting process given in
equation 22. Also, it has been shown that the relative volatility profile in Figure
18b can be represented by a geometric mean reverting process (47):

dx = oxdt + oxdz (21)
dx = n(x — x)dt + ocxdz (22)

where 1 is the speed of reversion and « is the nominal level that x reverts to. In
geometric Brownian motion, the percentage changes in x and Ax/x are normally
distributed (absolute changes are lognormally distributed). In geometric mean
reverting processes, the variable may fluctuate randomly in the short run, but
in the longer run it will be drawn back toward the marginal value of the variable.
The expected change in x depends on the difference between x and x. If x is
greater (less) than x, it is more likely to fall (rise) in the next short interval of
time. The variance also grows with x.

The dynamic uncertainties in chemical processes (batch processes) could be
represented by these Ito processes, depending on the character of uncertainty.
For example, the thermodynamic uncertainties in batch processes were modeled
using Ito processes and system nonidealities were easily distinguished (47). The
parameters of the Ito process are estimated based on a regression analysis tech-
nique. For more details on Ito processes please refer to Refs. 52 and 53.

4. Efficiency Improvements in Optimization Algorithms

The role sampling plays in optimization algorithms extends beyond uncertainty
analysis. Sampling accuracy is also crucial for deriving efficient algorithms for
discrete optimization and multiobjective optimization problems, which will be
described in this section.

4.1. Discrete Optimization. Discrete optimization problems involve
discrete decisions and combinatorics. Discrete optimization problems are classi-
fied into groups, eg, integer programming (IP), mixed integer linear program-
ming (MILP), and mixed integer nonlinear programming (MINLP). Many
chemical engineering applications like chemical synthesis, process synthesis,
planning, and scheduling involve discrete decision variables and mixed integer
problems. Probabilistic combinatorial methods can be used to solve these pro-
blems. Examples of these methods are simulated annealing (SA) and genetic
algorithms (GA). If the solution space is discontinuous or if the systems have
large combinatorial explosion, these probabilistic methods provide an alternative
to mathematical programming techniques, eg, branch and bound, generalized
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Bender’s decomposition (GBD) and outer approximations (OA) traditionally used
to solve discrete optimization problems (52).

Simulated annealing is a heuristic combinatorial optimization method.
Simulated annealing utilizes the analogy between the annealing procedure,
where a metal cools and freezes into its minimum energy structure and the
search for a minimal value in an optimization problem. In SA, the objective func-
tion (which is usually the cost) becomes the energy of the system. The goal is to
minimize the cost (energy). Random permutations are generated to displace par-
ticles, which is analogous to moving the system to another configuration. If the
configuration that results from the move has a lower energy state, the move is
accepted. Otherwise the move is accepted according to the Metropolis criteria
accepted with a probability = exp(—AE/K,T) (54). At high temperatures, a
large percentage of uphill moves are accepted. As the temperature gets cooler,
a small percentage of uphill moves are accepted. After the system has evolved
to thermal equilibrium at a given temperature, the temperature is lowered
and the annealing process continues until the system reaches the “freezing” tem-
perature. Painton and Diwekar (55) used the SA technique to improve the per-
formance of space nuclear power plants.

As SA is a probabilistic method, several random probability functions are
involved in this algorithm. The random probability A;; is used for acceptance
determination in Metropolis criterion, while the random generation probabilities
G;; are used to generate subsequent configurational moves. The Gj; of the conven-
tional SA algorithms rely on pseudorandom number generators, eg, Monte Carlo
sampling, which result in clustered moves over the configurational space. There-
fore, a larger number of moves or generations are needed to cover the configura-
tional space more evenly, which results in a longer Markov chain length (ie,
number of moves) at each temperature level. As mentioned earlier, HSS techni-
que can generate quasirandom samples showing k-dimensional uniformity prop-
erties. The HSS technique was used to develop a new SA algorithm called the
efficient simulated annealing (ESA). Since HSS generates more uniform samples
in multivariate space, it requires fewer numbers of moves to approximate ideal
probabilities.

Figure 19 shows the trajectories of the objective value for the test function
f(y) = 321%, y? with different Markov chain lengths. The ESA found the solution
with a Markov chain length of 45 at each temperature while the traditional SA
needed a Markov chain length of 75 to reach the same solution. Here ESA was
found to be ~30-54% more efficient than conventional SA (56).

Genetic algorithms (GA) are also used for combinatorial optimization pro-
blems. The GAs follow a search procedure based on Darwin’s theory of evolution
and the idea of survival of the fittest. The GAs begin with a set of solutions (repre-
sented by chromosomes) that is called the initial population. The population
for the next generation is selected according to a randomized selection procedure
involving four operators: (1) reproduction; (2) crossover; (3) mutation and immi-
gration, and the fittest individuals are selected from the population for the next
generation. This procedure is repeated until a stopping criterion, such as number
of populations or improvement of the best solution, is satisfied. Conventional GAs
also use Monte Carlo sampling based on pseudorandom numbers for generating
the initial population and various genetic operators. Similar to the ESA, an
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Fig. 19. The comparison between SA and ESA (56).

efficient genetic algorithm (EGA) based on the use of Hammersley sequence sam-
pling technique was developed by Diwekar and Xu (57), in order to improve the
efficiency of conventional GAs. Table 6 shows the comparison of GAs for problems
varying in complexity and size.

4.2. Optimization Under Uncertainty. Optimization under uncer-
tainty refers to the branch of optimization problems where there are uncertain-
ties involved in the data or the model, and is popularly known as stochastic
programming or stochastic optimization problems. The generalized stochastic
framework to solve optimization problems under uncertainty involves two recur-
sive loops: (1) the sampling and (2) the optimization loop. A schematic represen-
tation of this stochastic framework is shown in Figure 20. By interchanging the
position of the sampling loop, two kinds of solution procedures could be obtained.
These are called “here and now” and “wait and see” problems. “Here and now”
problems yield optimal solutions to achieve a given level of confidence. On the
other hand, “wait and see” problems involve a category of formulations that
show the effect of uncertainty on optimum design. A here and now problem
replaces a deterministic model by an iterative stochastic model with sampling
loop representing the discretized uncertainty space as shown in Figure 20. A
wait and see problem involves deterministic optimal decision at each scenario

Table 6. Efficiency Improvement in GA Using the HSS Technique®

Generation
Number of Optimal  MGA (Monte EGA Efficiency
Problems dimensions (nd) value Carlo) (HSS) improvement, %
problem 1 10 0 15 4 73.33
20 0 43 10 76.74
problem 2 3-11 0 9 6 33.33
problem 3 5 -1 176 83 52.84

%See Ref. 57.
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Fig. 20. Stochastic programming framework.

or random sample, equivalent to solving several deterministic optimization pro-
blems. A simple example for a stochastic program is given below in Example 6.

Example 6: News Vendor (newsboy) Problem In the news vendor
problem, the vendor must determine how many papers (x) to buy now at the
cost of ¢ cents for a demand that is uncertain. The selling price is s,, cents per
paper. For a specific case, the weekly demand is shown in Table 7.

For this case, the cost of each paper is ¢ =20 ¢ and selling price s, is 25 ¢.
Solve the problem if the news vendor knows the demand uncertainties given
above in Table 7, but does not know the demand curve for the following week
a priori (Table 8). Assume no salvage value s = 0, so that any papers bought
in excess of demand are simply discarded with no return.

Solution: In this example problem, the aim is to find the number of papers
the vendor must buy (x) to maximize the profit. Let r be the effective sales and w
be the excess that is going to be thrown away. This is a stochastic programming
problem where action (x) is followed by observation (profit) and reaction (or
recourse) (r and w). It is known that any papers bought in excess are just thrown
away. Therefore, one should minimize the excess, but increase the sells. Our first
instinct to solve this problem is to find the average demand and find the optimal
supply x corresponding to this demand. Since the average demand from Table 7
is 70 papers, x = 70 should be the solution. However, with this solution where
supply is 70 papers/day, the newsvendor will be making a loss of 50 ¢/week.

Table 7. Weekly Demand Uncertainties

J Demand, dj; Probability, p;
1 50 5/7

2 100 1/7

3 140 1/7
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Table 8. Weekly Demand

i Day Demand, (u) d;
1 Monday 50
2 Tuesday 50
3 Wednesday 50
4 Thursday 50
5 Friday 50
6 Saturday 100
7 Sunday 140

This is probably not the optimal solution. Can we do better? For that we need to
propagate the uncertainty in the demand to see the effect of uncertainty on the
objective function, and then find the optimum value of x. The above information
can be transformed for daily profit as follows:

Profit = —cx +5/7spd1 + 1/7sp(x) + 1/Tsp(x) (23)
ifdy <x<dj

or

Profit = —cx + 5/7spd1 + 1/7sp(d2) + 1/Tsp(x) (24)

ifds <x <ds

Note that the problem represents two equations for the objective function,
equations 23 and 24, making the objective function a discontinuous function and
is no longer an LP (linear program). The optimal solution to this problem is
x = d1 = 50 providing the news vendor with an optimum profit of 1750 ¢/week.

The difference between taking the average value of the uncertain variable
as the solution as compared to using stochastic analysis (propagating the uncer-
tainties through the model and finding the effect on the objective function as
above) is defined as the Value of Stochastic Solution (VSS). If we take the aver-
age value of demand, ie, x = 70 as the solution, we obtain a loss of 50 ¢/week.
Therefore, the VSS is 1750—(—50) = 1800 ¢/week.

Now consider the case, where the vendor knows the exact demand (Table 8)
a priori. This is the perfect information problem where we want to find the solu-
tion x; for each day i. Let us formulate the problem in terms of x;.

Max;mize Profit; = —cx; + Sales(r,w,d) (25)
Sales (r,w,d;) = spr; + sw;
r; = min(x;, d;) (26)
=x;,ifx; < d; (27)
=d;,if x; >d; (28)
w; = max(x; —d;,0)
=0,ifx; <d,; (29)

=x; —d;,if x; > d; (30)
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Table 9. Supply and Profit

i Day Supply, x; Profit, ¢

1 Monday 50 250

2 Tuesday 50 250

3 Wednesday 50 250

4 Thursday 50 250

5 Friday 50 250

6 Saturday 100 500

7 Sunday 140 700
average weekly 2450

Here we need to solve each problem (for each i) separately, leading to the
following decisions shown in Table 9.

One can see that the difference between the two values, (I) when the news
vendor has the perfect information ($2450 ¢/week) and (2) when he does not have
the perfect information ($1750 ¢/week), but can represent it using probabilistic
functions, is the Expected Value of Perfect Information (EVPI). The EVPI is 700
¢/week for this problem.

Both here and now and wait and see problems require representation of
uncertainties in the probabilistic space, and then propagation of these uncertain-
ties through the model to obtain probabilistic representation of output. Here,
sample approximation methods and sampling accuracy are often used to derive
new algorithms for optimization under uncertainty.

Sample Approximation Methods. As stated earlier, the stochastic pro-
gramming formulations often include some approximations of the underlying
probability distribution. The disadvantage of sampling approaches that solve
the yth approximation completely is that some effort might be wasted on optimiz-
ing when approximation is not accurate (58). For stochastic linear programming
the L-shaped method is a commonly used technique (59). For specific structures,
where the L-shaped method is applicable, two approaches avoid these problems by
embedding sampling within another algorithm without complete optimization.
These two approaches are the method of Dantzig and Infanger (60), which uses
importance sampling to reduce variance in each cut based on a large sample,
and the stochastic decomposition method proposed by Higle and Sen (61). For
more details on stochastic programming please refer to Refs. 52 and 58.

Sample average approximation methods have also been used to reduce the
computational time and increase accuracy for stochastic process design problems.
Wei and Realff (62) presented a method that involves two algorithms: optimality
gap method (OGM) and confidence level method (CLM), to solve convex stochastic
mixed-integer nonlinear problems. A smaller sample size is used to make deci-
sions (with several replications) and a larger one is used to reevaluate the objec-
tive value with the decision variables fixed. The sample sizes and replication
number are increased until a stopping criterion is satisfied. In the OGM algo-
rithm, the sample sizes are increased until the optimality gap of each upper
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Fig. 21. Uncertainty space at different optimization iterations (52).

and lower bound is sufficiently small; in the CLM algorithm, the sample sizes are
increased until an overall accuracy probability is within a certain tolerance.

Sampling Accuracy and Optimization. In almost all stochastic optimiza-
tion problems, the major bottleneck is the computational time involved in gener-
ating and evaluating probabilistic functions that represent the objective function
and constraints. The number of samples required for a given accuracy in stochas-
tic optimization problem depends on certain factors, eg, type of uncertainty and
the point values of the decision variables (55). Especially, for optimization pro-
blems, the number of samples required depends on the location of the trial
point solution in optimization space. Figure 21 shows how the shape of the sur-
face over a range of uncertain parameter values changes at different optimiza-
tion iterations. Therefore, the selection of the number of samples is an
important step which ultimately decides the accuracy of the optimal solution
in stochastic programming.

For the solution of stochastic integer programming problems, variants of SA
and GA have been developed.

Stochastic Annealing and Stochastic Genetic Algorithms. The stochas-
tic annealing (STA) algorithm (53,63,64) is a variant of simulated annealing and
is used to optimize stochastic integer programming problems. The STA provides
an improvement over SA by obtaining both the decision variables and the
number of samples required for the optimization problem. For balancing compu-
tational efficiency and solution accuracy, a penalty function is introduced in the
objective function to ensure that the algorithm selects greater number of samples
as the solution nears optimum value.

Annealing temperature schedule (cooling schedule), is used to decide the
weight b(¢) on the penalty term for imprecision in the probabilistic objective func-
tion. The choice of the penalty term also depends on the error bandwidth (¢) of
the function that is optimized and must incorporate the effect of number of
samples. Therefore, the new objective function in stochastic annealing, consists
of a probabilistic objective value P and the penalty function, (b(¢)s):

minZ(cost) = P(x;u) + b(¢)e (31)

The weighting function b(f) can be expressed in terms of the temperature
levels (#) and is given by b(t) = by/k’ where by and & are constants. At high
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temperatures, the sample size is small, and the algorithm is mainly exploring the
functional topology to identify regions of optima. As the system gets cooler, the
algorithm searches for the global minimum and more accurate estimates of the
objectives/costs are needed and this requires more samples. The error bandwidth
of the Monte Carlo samples (epcg) is estimated by the central limit theorem.

Using the HSS technique for the generation probability G, Kim and
Diwekar (56) developed the ESTA. This algorithm uses the central limit theorem
to evaluate the sampling errors and uses the HSS technique for generation
probability. Another variant of STA is the Hammersley stochastic annealing
algorithm (HSTA). This algorithm was presented by Kim and Diwekar (56)
and it uses (I) HSS for the generation probability G;; in annealing procedure;
(2) HSS for the inner-sampling loop, where number of samples Ngamp, are deter-
mined; and (3) the HSS specific error bandwidth (gggs). The error bandwidth for
the Hammersley sequence samples (egsg) is given by a fractal dimension analy-
sis (64,65). This methodology uses the k-dimensional uniformity properties of
HSS technique and the HSS error bandwidth to achieve a trade-off between
accuracy and efficiency. Example 7 describes the steps of the HSTA algorithm
in a numerical example.

Example 7: In order to show the applicability of the HSTA algorithm, the
following test function is used:
2
min Z (wi x y7)
i=1

—20<y<20
u~N(0.5,0.16)

(32)

The initial configuration of y is (20,20) and the uncertainty variable u follows a
normal distribution with mean 0.5 and a standard deviation of 0.16. The simula-
tion conditions are

Initial temperature (Tipitial = 1)
Temperature decrement (o« = 0.85)
Markov chain length (I = 20)

Initial number of samples (Ngamp = 30)
by = 0.005; £ = 0.940

Step 1: Generate 20 (Markov chain length) sets of random numbers using
HSS. Two random numbers are used for generation probability
G, three random numbers (H}) are used for determining Ngump
and one random number A;; is used for the Metropolis criteria.

Step 2: Generate the next configuration. If G;; ; for random selection is <0.5,
then y, is selected for random bump. If G;; 5 is <0.5, then the value of
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selected y; is decreased. If the bumped values reside outside the
bounds, the random bump is increased to the original y; value. For ex-
ample, for this case the G;; are 0.2031 and 0.6914. Therefore, y; is in-
creased to 21. But this is outside the bounds and thus y; becomes 19.

Determine the number of samples Ngap,, for trade-off between solu-
tion accuracy and efficiency. To determine Ngymp, three random
numbers (H;) generated by the HSS technique is used. If H; is
<0.5, then Ngmp+5xHy; becomes new Ngmp Otherwise,
Nsamp — 5 x Hz becomes a new one. The new Ny, for this case is 28.

Generate Ngump samples for the uncertain variable u. Evaluate the
probabilistic objective constraints, expected value and penalty func-
tion. The expected value is 219.36 and the penalty term is 1.3E-5.
Determine is the current configuration is accepted or rejected based
on Metropolis criterion. If AE[z] < 0 then the current configuration
is accepted. If AE[z] > 0 then the move is accepted with a probability
exp[—A/T]. Since AE[z] = AE[z],.. — AE[z],4 is negative, the cur-
rent configuration is accepted.

new

Repeat the steps from 2 to 5 if the current iteration point is smaller
than Markov chain length. In Table 10, 20 iterations at the first tem-
perature level (TL) are shown.

Check the stopping criteria and decrease temperature. If any of the
stopping criteria are satisfied, then the simulation is terminated
with a successful result. Otherwise, new temperature becomes
T = oT, and simulation goes back to Step 2. Table 11 shows the si-
mulation results with respect to TL, where the optimum solution is
reached at the 10th temperature level.

The HSTA algorithm is a useful tool for solving large scale combinatorial
optimization problems under uncertainty and was applied to computer aided
molecular design problems (56).

Table 10. Configurations at the First TL

I Y1 Yo Gi,j,l Gi!/"g Nsamp Penalty E[Z]

0 20 20 800.00
1 19 20 0.2031 0.6914 28 1.3E-5 219.36
2 19 19 0.8281 0.3580 27 1.4E-5 210.86
3 18 19 0.3281 0.0247 31 1.1E-5 196.78
4 18 20 0.5781 0.9753 35 0.9E-5 208.18
5 18 19 0.0781 0.6420 30 1.2E-5 208.06
6 18 18 0.8906 0.3086 26 1.5E-5 189.02
7 19 18 0.3906 0.8642 21 2.2E-5 202.63
19 15 16 0.3672 0.7160 27 1.4E-5 140.30
20 14 15 0.6172 0.3827 24 1.7E-5 121.28
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Table 11. HSTA Simulation Results

Vol. 26

Temperature level (TL) Elz] b(t)e Y1 Y2
1 121.28 2E-5 14 15
2 53.41 4E-5 9 10
3 12.04 4E-5 4 5
4 0.00 3E-5 0 0
5 0.59 3E-5 1 -1
6 0.59 3E-5 1 -1
7 0.31 3E-5 1 0
8 0.31 3E-5 1 0
9 0.31 4E-5 1 0

10 0.00 5E-5 0 0

A similar approach was also applied to genetic algorithms by Diwekar and
Xu (57). First the stochastic genetic algorithm (SGA) was developed that employs
Monte Carlo sampling for stochastic optimization problems. Then efficient sto-
chastic genetic algorithm was developed that uses HSS technique and Monte
Carlo confidence intervals. Finally, the Hammersley stochastic genetic algorithm
(HSGA) was introduced that uses HSS technique and HSS specific error band-
width to achieve a trade-off between accuracy and efficiency. The HSGA dis-
played the best performance among these algorithms. The performance of
these three algorithms is compared in Figure 22 for the test function:

ND . ND
1 \2 9
Fley.8) = (G~ ) +>_co? — [ Jeos(antiyy) (33)
i i i
1 ik 21 31 41 51 71 81
—e— SGA
—=— ESGA
—9.61 —a— HSGA
(0]
=]
©
>
2
©
0
Qo
(e}
VN
-10.1
Generation

Fig. 22. Comparison of performance and convergence path for SGA, ESGA, and HSGA.
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Fig. 23. Computational speed-up through MINSOOP (67).

4.3. Multiobjective Optimization. Multiobjective optimization (MOP)
problems deal with conflicting and different objectives. They are commonly
used where engineers are not only looking for low cost options but also trying
to reduce the environmental and health impacts and risk and improve the relia-
bility and safety of the plant. A generalized multiobjective optimization problem
can be formulated as follows:

min Z=Z;,i=1,....p p>2
st. h(x,y)=0 (34)
glx,y) <0

where x and y are continuous and discrete decision variables, and p is the
number of objective functions. The functions A(x,y) and g(x,y) represent equality
and inequality constraints, respectively. There is a large array of analytical
techniques to solve this MOP problem; however, the MOP methods are generally
divided into two basic types: preference-based and generating methods.
Preference-based methods such as goal programming attempt to quantify the
decision-maker’s preference, and with this information, the solution that best satis-
fies the decision-maker’s preference is then identified (2,52). As is well known,
mathematics cannot isolate a unique optimum when there are multiple competing
objectives. Mathematics can at most aid designers to eliminate design alternatives
dominated by others, leaving a number of alternatives in what is called the Pareto
set (66). Generating methods, eg, the weighting method and the constraint method,
have been developed to find the exact Pareto set or an approximation of it. For each
of these designs, it is impossible to improve one objective without sacrificing the
value of another relative to some other design alternative in the set. From among
the dominating solutions, it is then the design that is the most appropriate for that
particular purpose is selected. At issue is an effective means to find the members of
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the Pareto set for a design problem, especially when there are more than two or
three objectives; the analysis per design requires significant computations to com-
plete, and there are an almost uncountable number of design alternatives. A pure
algorithmic approach to solving is to select one to minimize while the remaining
objectives are turned into an inequality constraint with a parametric righthand
side, L. The problem takes on the following form:

min Z =2Z;
t. h =0
gx,y) <0

Zk SLk7k:177J715.]+177p

where Z; is the chosen jth objective that is to be optimized. Solving repeat-
edly for different values of L; chosen between the upper, Zy(j) and the lower,
Z1(J)), bounds leads to the pareto set. This is the basis of the MINSOOP
algorithm.

MINSOOP (Minimizing Number of Single Objective Optimization Pro-
blems) algorithm was developed by Fu and Diwekar (67) to address multiobjec-
tive optimization problems based on HSS technique. The steps for a
multiobjective optimization problem with % objectives (to be minimized) are listed
as follows:

Step 1: Solve % single objective optimization problems individually with the
original constraints of a multiobjective problem to find the optimal
solution for the individual % objectives.

Step 2: Compute the value of each of the k& objectives at each of the % indi-
vidual optimal solutions. In this way, an approximation of the poten-
tial range of values for each of the % objectives is determined and
saved in a table (called payoff table). The minimum possible value
is the individual optimal (minimizing) solution. The approximate
maximum possible value of the Pareto set is the maximum value
for that objective found when minimizing the other 2 — 1 objectives
individually.

Step 3: Select a single objective (Z;) to be minimized. Transform the remain-
ing k—1 objectives into equality constraints of the form
Z; <;,i=1,...,k, i1#1] and add these new k£ — 1 constraints to the
original set of constraints. Then the original multiobjective optimiza-
tion problem is transformed into a family of single objective optimi-
zation problems with parametric right hand sides.

Step 4: Select a desired number of single objective optimization problems to
be solved to represent the Pareto set. Using the HSS technique to
generate the desired number of combinations of the inequality con-
straint values g;,...,€_1, €41, .., &, within the range determined in
step 2.

Step 5: Solve the constrained problems set up in step 4 for every combina-
tion of the right hand side values determined in step 3. These feasi-
ble solutions form an approximation for the Pareto set.
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The uniformity property of HSS technique is crucial for the success of MIN-
SOOP algorithm. Figure 23 shows how the MINSOOP algorithm improves effi-
ciency for a simple nonlinear convex optimization problem as the number of
objectives increases. Similar improvements are noted in multiobjective genetic
algorithms based on the uniformity property of HSS (68).

5. Applications of Sampling Techniques in Chemical Systems

The life cycle of a chemical manufacturing process extends from product discov-
ery, raw material selection (chemical synthesis) and process development (pro-
cess synthesis and design) to process operation, planning and management
that involve tasks, such as scheduling, supply chain, and process control. Con-
temporary process design approaches require engineers to not only look for low
cost options, but also include several other criteria, eg, reliability, flexibility,
operability, controllability, environmental and ecological impacts, safety and
quality into different stages of analysis and design. This results in additional
complexities and uncertainties. This section will present some of the applications
of sampling techniques in product discovery, chemical synthesis, process synth-
esis and process operations ranging from scheduling, supply chain and process
control. The role of sampling techniques in risk and reliability analysis will
also be discussed.

5.1. Product Discovery and Design: Computational Chemistry and
Molecular Simulations. At the discovery stage of a chemical process, compu-
tational chemistry, molecular modeling, and simulations are widely used in che-
mical and pharmaceutical industries. For the design and discovery of new
molecules or drug compounds, Monte Carlo or molecular dynamics simulations
are applied to estimate the physical, chemical, biological, and toxicological prop-
erties of interest. A review of molecular modeling and simulation techniques can
be found in Refs. 15 and 69. These methods depend heavily on random number
generators and sampling. The following discusses the role of sampling in mole-
cular simulations where Monte Carlo methods are predominant.

In Monte Carlo molecular simulations, particles are randomly selected and
moved by a random extent and the energy change of the system is analyzed.
These random perturbations on the system configuration are accepted according
to Metropolis criterion, with a probability proportional to the Boltzmann con-
stant. This forms the basis of Metropolis Monte Carlo (MMC) method that is
the first approach in increasing efficiency of Monte Carlo molecular simulations
by using the “importance sampling” concept. In importance sampling, a biased
distribution is used to obtain more samples from a region of importance.
Boltzmann distribution function is such a distribution used in MMC where
system configuration states that make substantial contributions to the ensemble
averages are generated. The MMC method requires large number of samples to
generate accurate property estimations and is computationally intensive espe-
cially for large number of molecules and complex fluids. Therefore, many
researchers have worked on sampling techniques in order to speed up the calcu-
lations and cover the configurational space more efficiently. Some examples of
these biased sampling techniques are configurational-bias Gibbs ensemble (70)
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and its variants (71-73), and non-Boltzmann biasing techniques (74,75). Despite
the fact that, the literature is abundant in examples of algorithms for efficiency
improvement for Monte Carlo simulations, most of these methods are derived
based on the importance sampling (biased sampling) principle and are often pro-
blem specific and offer customized solutions for particular systems.

Recently, a universal approach for increasing efficiency in molecular simu-
lations using the HSS technique was presented (76). Pseudorandom numbers are
used in MMC method for performing the random moves for the molecules and for
acceptance probability. This new technique replaces the pseudorandom numbers
in a systematic way by quasirandom samples of HSS, to speed-up the simulations
and to increase the accuracy. While replacing the pseudorandom numbers with
quasirandom samples, the k-dimensional uniformity property of HSS technique
was maintained and exploited to cover the configurational space more efficiently.
This method was used to estimate thermodynamic and biological/toxicological
properties of chemicals, more specifically octanol-water partition coefficients.
This new framework provided a better way to predict octanol-water partition
coefficients in terms of prediction accuracy and computational efficiency (number
of cycles), as shown in Figure 24. Also note that this proposed approach can be
used in conjunction with the biased MCS (importance sampling) strategies pre-
sented in the literature and is not restricted to specific applications.

5.2. Chemical Synthesis. Process design starts with chemical synth-
esis in a laboratory where a chemical pathway from reactants to products is
defined. This involves the search for molecules possessing desired physical, che-
mical, biological properties. Computer aided chemical synthesis relies on the
group contribution methods (77,78) which assign numerical values to functional
groups forming each molecule, through experimental data and theoretical meth-
ods. It is possible to calculate a wide range of characteristics for any given che-
mical by combining these functional groups.

A basic diagram of computer aided molecular design (CAMD) is shown in
Figure 25. The starting point in CAMD is a set of functional groups. All possible
combinations of these functional groups are explored to generate molecules that

—&— current state-
of-the art

—&— new framework

—&— experimental

T T 1

0 2000 4000 6000
Number of cycles

Fig. 24. Octanol-water partition coefficient for propanol predicted by molecular
simulations.
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Fig. 25. A basic diagram of computer-aided molecular design.

satisfy feasibility constraints. The properties of each group and the interaction
parameters between groups can be obtained theoretically, experimentally, or
by applying statistical regression techniques. Once molecules are generated,
the properties of these molecules are inferred from the properties of the func-
tional groups structuring them. If the generated molecule satisfies certain cri-
teria, then it is added to the list of candidate molecules. This method can
generate a list of candidate molecules for any purpose with reasonable accuracy
within a moderate time scale.

There are three main CAMD approaches: generation-and-test, mathemati-
cal optimization and combinatorial optimization approaches (79). All methodolo-
gies for CAMD are subject to uncertainties due to experimental errors, imperfect
theoretical models/parameters, and inadequate knowledge of the systems.
Furthermore, group parameters may not be available and current group contri-
bution models (GCM) cannot estimate all necessary properties.

Uncertainties in CAMD have been addressed in various publications. For
example, Maranas (80) studied polymer design with optimal thermophysical
and mechanical properties. These properties are estimated based on group
contribution methods and there are always discrepancies between the experi-
mental data and the data predicted by group contribution method. In order to
model the uncertainties in group contribution parameters, probability distribu-
tion functions are utilized, which results in a chance constrained formulation.
These chance constraints represent the probability of meeting the target values
of properties. The solution to the optimal molecular design problem under uncer-
tainty has at least an o chance of meeting performance objectives and B chance of
maintaining property values within their designated bounds. Since the formula-
tions provided by Maranas (80) involve probability terms, this poses a problem of
integrating multivariate probability density distributions. In order to overcome
the computational burden, stochastic constraints are transformed into equiva-
lent deterministic ones. This allows reaching an exact solution to the resulting
convex MINLP formulation.

Tayal and Diwekar (81) also addressed property prediction uncertainty in
polymer design and presented a generalized stochastic framework based on
HSS and stochastic annealing to solve this problem. Because of its increased
computational efficiency, this framework is applicable to nonlinear or even
black box property prediction models, nonlinear objective function and con-
straints and stable and nonstable distributions for the uncertain variables. It
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also provides a set of solutions instead of only one solution, which gives flexibility
to the designer.

Kim and Diwekar (49,50,82) applied the CAMD approach to the selection of
environmentally benign solvents under uncertainty for extraction. Uncertainties
in property prediction models were quantified using available experimental data
as shown earlier in Figure 16. The HSTA algorithm was implemented (56) to
solve this combinatorial optimization problem. This algorithm makes use of
the efficient Hammersley sequence sampling technique for updating discrete
combinations, reducing Markov chain length and for determining the number
of samples automatically.

The problem of environmentally benign solvent selection was also studied
using genetic algorithms (57,83). Hammersley stochastic genetic algorithm was
developed, which outperforms the HSTA algorithm by choosing solvents with
better targeted properties in less computational time.

5.3. Experimental Design, Model Building, and Parameter Estimation.
Experimental design is used frequently by researchers for assessing the perfor-
mance of a new catalyst, determining a reaction mechanism, or determining the
best operating conditions for a chemical plant. Experimental design also affects
the fidelity of the fundamental and semiempirical models developed and model
parameters estimated using experimental data for the process at hand. Reliable
models offer competitive advantage to industries for model-based process design,
operations, and control.

In experimental design, it is desired that the experimental region that is
sampled generates the maximum amount of information for determining the cor-
rect model from a set of candidates and estimating the parameters of this model
with the greatest precision.

When building models one uses some prior information, such as physical,
chemical, or biological laws, and propose possible model candidates for the
process under consideration. These models may have parameters that have a
physical meaning, eg, the kinetic constants for a chemical reaction that one
wishes to calculate with maximum precision. Usually, these models consist of
mixed differential and algebraic equation systems.

Model building consists of the following three stages (84):

Stage I. Specify one or more models to describe the process and perform
preliminary identifiability and distinguishability tests before any
data is collected in order to determine whether or not the para-
meters in the mathematical models can be uniquely identified
and model structures can be distinguished from one another.

Stage II: Design experiments for model discrimination to select the best
model representative of the process.

Stage III: Design experiments to improve the precision of the parameters
within the best model to arrive at a statistically verified model for-
mulation. The design criterion is to minimize the volume of the con-
fidence region for the parameter estimates.

Once the best model is chosen, the parameters of the model are random
variables with associated probability distributions. The uncertainty in these
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parameters affects the predictions made with the models for design, optimiza-
tion, and control. High degree of correlation may also exist within the model
parameters. For example, Whiting and co-workers (85) developed a new sam-
pling strategy, called equal probability sampling (EPS), to account for the corre-
lations between thermodynamic model parameters and sample the parameter
space more efficiently.

If a complex model is used to represent the physical phenomena, with high
number of model parameters, it is time consuming and expensive to estimate all
the parameters with high precision. This task proves especially difficult when
there are nonlinearly related model parameters. In these cases, the number of
experiments needed to be performed to identify all the model parameters is
very costly. Therefore, sensitivity analysis may be performed to identify the
most significant model parameters and the experimentation can be directed
toward determination of these parameters alone, in order to reduce the cost
and duration of the parameter estimation and model validation process. Para-
meter sensitivity analysis is used to quantify the effect of certain model para-
meters on the model output. Recently, Kontoravdi and co-workers (86) applied
Sobol’s method for global sensitivity analysis (GSA) to a mammalian cell culture
producing monoclonal antibodies and identify the parameters that have a signif-
icant impact on the output. Each parameter space is sampled using a Sobol
sequence, which yields no overlapping points to thoroughly investigate the entire
range of parameter values. This method can be used as a precursor for experi-
mental design to reduce the cost of experimentation. A review of sensitivity ana-
lysis techniques for chemical models was presented recently by Saltelli and co-
workers (87).

5.4. Process Synthesis and Design. Process synthesis translates che-
mical synthesis into a chemical process. It encompasses the choice of various unit
operations, how they are connected, and the optimization of the proposed plant.
Process design activities start at this level and a flowsheet of the plant is gener-
ated according to these decisions and process simulators are used to predict mass
and energy flows for the process. Commonly employed methodologies for select-
ing optimal process flowsheet configurations can be classified into four groups
(88): (1) optimization-based approach; (2) hierarchical heuristic approach; (3)
thermodynamic phenomena driven approach; (4) evolutionary methods.

The optimization approach to process synthesis involves (a) formulation of a
complex flowsheet incorporating all the alternative process configurations, which
are called superstructures and (b) identification of an optimal design configura-
tion for a system to meet specified performance and cost objectives. Once the
superstructure is known, combinatorial optimization methods, eg, mixed-integer
nonlinear programming (MINLP) algorithms, can be used to solve the synthesis
problem.

The literature in the area of process synthesis and process design under
uncertainty has been concentrated on two focused application areas: (1) pollution
prevention by design, and (2) designing for flexibility.

The earlier papers in synthesis under uncertainty with pollution prevention
focus dealt with integrated environmental control systems for coal-based power
systems. The work continued and extended to address synthesis problems in this
area (88-90). Nuclear waste management posed a very hard synthesis problem
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(91). The combinatorial, nonconvex nature of the problem was hard to solve even
with deterministic optimization methods. Uncertainties associated with waste
tank contents and models caused further problems and demanded new algo-
rithms. The new stochastic annealing algorithm provided optimal and robust
solution to this problem in the face of uncertainties with reasonable computa-
tional time (64). A multiobjective extension of this problem to include policy
aspect was possible due to these new algorithms (92). Dantus and High (93)
also used this new algorithm for waste minimization in methylene chloride pro-
cess synthesis.

Acevedo and Pistikopoulos (94) also addressed process synthesis problems
under uncertainty and presented a stochastic framework based on a two-state
stochastic MINLP formulation for the maximization of a function comprising
the expected value of the profit, operating, and fixed costs of the plant. Uncertain
parameters were described by general probabilistic distribution functions and
multiperiod formulations.

Increased environmental concerns in recent years have profoundly changed
traditional process synthesis and design. If the environmental issues are
addressed in early stages of design, there is greater flexibility and more opportu-
nities to reduce environmental impacts at a lower cost. Recently, Diwekar (52)
presented a generalized framework to address this problem. Figure 26 presents
the different levels involved in this framework. The innermost level corresponds
to models for process simulation. In this level, all possible process alternatives for
a particular process are defined. Chemical process simulators, eg, AspenPlus
(95), MultiBatchDS (96), or SuperPro (97), can be used for the innermost model-
ing. The second level corresponds to the sampling loop where the uncertainties
can be specified in terms of probability distributions. Once probability
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distributions are assigned to the uncertain variables, sampling techniques, eg,
Monte Carlo sampling, HSS, or LHS can be used to perform the sampling opera-
tion from the multivariable uncertain parameter domain as discussed in the sec-
tion on Sampling Techniques. The third level is the continuous optimizer that
involves continuous decisions, eg, process design and operating conditions. In
the fourth level, discrete decisions, such as chemical and process structural alter-
natives, are managed by mixed-integer programs. The outermost loop is the
multiobjective programming loop where different objectives, eg, cost and envir-
onmental impacts, are considered and trade-off surfaces that are called Pareto
optimal solutions are generated. Various applications of this approach, eg, hybrid
fuel cell power plant design under uncertainty (1,98) and environmentally
benign heterogeneous azeotropic distillation system design (68) have been pre-
sented. Kheawhom and Hirao (99) also presented a two layer algorithm for envir-
onmentally benign process synthesis under uncertainty. In the outer layer, the
synthesis problem is represented by a multiobjective optimization problem con-
sidering the performances associated with design parameters. In the inner layer,
the problem is expressed as a single-objective optimization problem taking in to
account the operating performances in the presence of uncertainty. This algo-
rithm was applied to a membrane-based toluene recovery process.

As mentioned earlier, it is essential to identify environmental impacts of a
process earlier because the opportunity to overcome environmental problems in
later stages of process development diminishes. However, in early design stages,
there is high uncertainty in various economical, ecological, and technical process
parameters. For this purpose, Hoffman and co-workers (100) proposed a new
approach to select promising process alternatives in early stages of design. The
method is based on approximating flowsheets by polynomial response surfaces
with a lower complexity. A multiobjective optimization problem was solved for
selecting a production process for hydrocyanic acid with 400 uncertain variables.
Latin hypercube sampling technique was performed on the substituted response
surface to obtain Pareto optimal solutions.

As stated earlier, process flexibility is an area that received significant
attention, as it ensures that processes are operational and safe when exposed
to variations in operating conditions. For example, for waste reduction in phar-
maceutical industries (101,102) a discrete representation of waste loads assign
probabilities to distinct waste scenarios. Since the explicit enumeration of all
possible waste scenarios for numerous waste streams would lead to a massive
amount of uncertain variables, a randomly selected sample is used to represent
the uncertain space based on Monte Carlo sampling. Then a flexibility index is
defined that measures the flexibility of a waste treatment policy to changing
waste loads and superstructures are searched for recovery and treatment poli-
cies. Flexibility issues have also been addressed in process synthesis for heat
exchanger network design (103,104), and synthesis of heat integrated distillation
sequences (105). However, these papers use a scenario-based approach to repre-
sent uncertainties.

5.5. Process Operation. The aim of process operations is to optimally
use capital, material, energy and information resources to produce desired che-
mical products in a reliable and flexible way while complying with environmental
and safety regulations. Process operation involves activities ranging from
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process control, monitoring and diagnosis, process planning, scheduling, and
supply chain management. The following sections describe these various activ-
ities. The problems related to production planning, scheduling, and supply
chain often involve discrete combinatory decisions and uncertainties. These pro-
blems belong to batch processing, which is generally used for the production of
high value added, low volume products, eg, pharmaceuticals and specialty chemi-
cals. Even though various sources of uncertainties exist in batch processing,
most of the literature deal with demand uncertainties. To represent these uncer-
tainties, sampling methods are used.

Process Planning, Management, and Scheduling. Most of the problems
in management, scheduling, and planning include combinatorics (discrete
choices and decisions) and uncertainties. Pekny (106) reviewed this area and pro-
vided algorithm structures that simultaneously consider combinatorial aspects
and data uncertainty for industrial scale problems. The simulation-based optimi-
zation approach described in this article uses a customized mixed-integer linear
programming solver to optimize process behavior together with a discrete event
simulator to investigate the effect of uncertainty on the plans output from the
optimizer. This procedure requires a biased sampling scheme to focus on critical
events and avoid a large number of simulations that are not insightful.

Scheduling problems have been studied widely in the chemical engineering
literature. Recently, Lin and Floudas (107) presented an overview of scheduling
problems in multiproduct—multipurpose batch and continuous processes. The
overall profitability of a process and the timely delivery of products highly
depend on scheduling. Scheduling problems involve sequencing, assignment of
tasks to equipment, and maintenance over a planning horizon, and inventory
considerations of a process. Scheduling problems could be described conveniently
using a resource-task equipment network. These problems are usually encoun-
tered in batch processing. In order to determine operating policies based on rea-
listic production plans, the uncertain nature of processes must be addressed. In
batch processing, uncertainties result from processing time fluctuations, equip-
ment reliability or availability and demand. Two different approaches exist for
scheduling problems under uncertainty: (1) reactive scheduling and (2) stochas-
tic scheduling. In reactive scheduling, uncertainties are handled by adjusting the
schedule when the uncertain parameters or unexpected events occur. Usually,
heuristic approaches are used for schedule modifications. Whereas, in stochastic
scheduling, the uncertainties are considered at the original scheduling stage and
optimal and reliable schedules are found in the presence of uncertainty.

A scenario based approach is usually used, which comprises of all the pos-
sible future outcomes modeled by discrete probability distributions and the
expected value of a performance index, eg, makespan or profit is optimized
with respect to the scheduling decision variables (108). A scenario contains a dis-
crete value for all uncertain variables within a given time interval and its asso-
ciated probability. The number of scenarios increases exponentially with the
number of uncertain variables, and this increases the problem size. Bassett
and co-workers (109) presented a framework for addressing uncertainties by
means of Monte Carlo sampling. Uncertain variable, eg, processing times and
equipment downtimes, are sampled from their probability distributions and
the reliability of meeting a certain due date is determined. Lee and Malone
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(110) proposed a probabilistic approach based on the hybridization of Monte
Carlo simulation and simulated annealing techniques to obtain a schedule able
to handle uncertainties in parameters of batch process scheduling. This approach
was also used to develop a flexible planning algorithm (111). Process planning
involves the optimal selection of processes from among competing alternatives
and timing of capacity expansions in a way that maximizes the net present
value of the project over a planning horizon. Liu and Sahinidis (112) developed
a two-stage stochastic program for process planning problems under uncertainty
using a combination of Bender’s decomposition and Monte Carlo sampling.

Supply Chain Management. Supply chain management takes the sche-
duling problems one step further and spans coordination of the management of
multiple facilities and shipment of materials through an associated transporta-
tion network to customers. Supply chain management spans activities related to
storage and movement of raw materials and products from the plant to the point
of consumption. Due to changing market conditions and customer demands, it is
critical for businesses to have an efficient and flexible supply chain. Various
sources of short- and long-term uncertainties exist in these systems. Examples
of short-term uncertainties are uncertainties in processing parameters, eg, pro-
cessing times or yields or availability of equipment. On the other hand, long-term
uncertainties include price fluctuations in raw material and final products and
seasonal variations in demand, which occur over a longer period of time.

In literature, various sources of uncertainties are addressed in supply chain
management. Gupta and Maranas (113) considered demand uncertainty in mid-
term planning of multisite supply chains. A stochastic programming-based
approach was described to model the planning process as it reacts to demand reali-
zations unfolding over time. Lababidi and co-workers (114) developed an optimiza-
tion model to study the supply chain of a petrochemical company under uncertain
operating and economic conditions. The objective function is based on optimizing the
system resources by minimizing the total production costs and raw material pro-
curement, as well as lost demand, backlog, transportation, and storage penalization.
Uncertainties are considered in demands, market prices, raw material costs, and
production yields. Multiple scenarios of an uncertain future, each with an associated
probability of occurrence, were considered. It was found that uncertainties have a
profound effect on the planning decisions of the petrochemical supply chain. Jung
and co-workers (115) proposed the use of deterministic planning and scheduling
models that incorporate safety stock levels as a means of accommodating demand
uncertainties in routine operation by a Monte Carlo sampling technique. The pro-
blem of determining the safety stock level to use to meet a desired level of customer
satisfaction is addressed using a simulation-based optimization approach. Wan and
co-workers (116) extended the concept of simulation-based optimization by introdu-
cing a surrogate-based model together with domain reduction and incremental
sampling to extract structure information from noisy simulation results and to opti-
mize supply chain decisions. The idea behind a surrogate-based model is to fit a sin-
gle surface for the whole decision space, and use this surface to perform
optimization instead of the simulation model. This model is constructed using
Latin hypercube sampling (LHS), domain reduction techniques to concentrate on
the exploration of good regions, and support vector machines to extract structure
information from noisy data.



1044 SAMPLING TECHNIQUES Vol. 26

Guillen and co-workers (117) presented a stochastic multiobjective optimi-
zation approach to obtain a trade-off between customer satisfaction and expected
profit to be achieved in the short-term operation of chemical industry supply
chains. A two-stage stochastic formulation is used, which considers the uncer-
tainty associated with reactions to future demand and a set of Pareto optimal
solutions are generated. This approach is aimed to provide decision support in
making optimal offer proposals during negotiation process between customers
and suppliers. The uncertainty associated with product demands and prices is
represented by a set of scenarios with a given probability of occurrence and
these scenarios are generated by performing Monte Carlo sampling.

Hung and co-workers (118) presented a new modeling approach based on an
object-oriented architecture to handle supply chain configurations, operational
decisions and policies, through the use of a generic supply chain node. The
model provides a fully dynamic simulation of the supply chain and the effect of
various uncertainties are evaluated through Monte Carlo simulation and other
more efficient, sampling techniques based on quasi-Monte Carlo methods. The
uncertain variables in supply chains are sampled from their respective probabil-
ity distributions and the expected value of a performance indicator, eg, customer
service level or average inventory is calculated.

Reliability. Because of increased competition worldwide, chemical plants
need to operate with high process reliability to increase operational effective-
ness and profits. System reliability and availability methods can be classified
as measurement- and model-based methods (119). Measurement-based methods
are expensive as they require building a real system or its prototype and taking
measurements, and then analyzing the data statistically. In the context of
process systems, at the design stage where the system or its prototype has not
yet been built, the use of measurement techniques is not feasible. While at the
operational stage, it can prove to be very expensive to inject faults into a real sys-
tem to measure data. Model-based methods are much easier to use and are par-
ticularly useful at the design stage to screen lots of design alternatives without
building the actual system. However, model-based methods are subject to model
uncertainties, which propagate into RAM (reliability, availability, and maintain-
ability) performance (120).

It has become important in recent years to address reliability issues at the
conceptual design stage. It is also critical to increase the availability of the plant
to save on lost production costs. The problem of including uncertainties in equip-
ment availability at the design stage was addressed by Pistikopoulos and co-
workers (121-124). Obtaining an optimal production schedule in the presence
of equipment failure uncertainty for multiproduct/multipurpose batch plants is
important for profitability and timely production. Sanmarti and co-workers
(125) addressed this problem and introduced a schedule reliability index to iden-
tify robust schedules. This reliability index represents the discrete probability
that a corresponding unit will be available to perform the next scheduled
task based on the failure history and maintenance operations carried out
on the unit. Production and maintenance schedules were determined simulta-
neously with this methodology. However, only the scenario-based approach is
used for the probabilistic evaluation of reliability and availability in all these
papers.
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Genetic algorithms were applied to preventive maintenance optimization
problems by Tan and Kramer (126). Their framework for preventive mainte-
nance optimization combines Monte Carlo simulation with a genetic algorithm.
This framework is suitable for handling uncertainties and nondeterministic
objective functions.

Risk Analysis and Research Management. Risk and policy analysis
involves uncertainty quantification and characterization using probability distri-
butions and sampling. Since the results of the probabilistic analysis depend on
the number of samples chosen, the choice of an efficient sampling technique
becomes crucial. It is desirable to use a sampling technique that can predict
the output probabilistic measure accurately with the minimum number of
samples. Wang and co-workers (25) presented new sampling techniques based
on the combination of HSS and LHS for the evaluation of health risk associated
with exposure to hazardous materials. This sampling technique inherits the
advantages of both HSS and LHS for superior efficiency.

Sampling techniques are also used for financial risk assessment in chemical
process industries. For example, Bonfill and co-workers (127) presented a
stochastic optimization approach to manage risk in short-term scheduling of
multiproduct batch plants with demand uncertainties. A two-stage stochastic
optimization model accounting for the maximization of the expected profit was
used and this model was also extended to incorporate the availability of option
contracts. To represent the demand uncertainty, independent scenarios were
simulated by Monte Carlo sampling from the given probability distributions. A
similar approach was applied for processing time uncertainties as well (128).
Guillen and co-workers (129) developed a new strategy for integrating pricing
decisions with the scheduling of batch plants to manage financial risk associated
with demand uncertainty. The relationship between prices and demand have
been modeled and forecasted and integrated into the scheduling model to deter-
mine simultaneously the prices and optimal schedule to maximize the profit. A
sample average approximation (SAA) method was used to approximate the
expected profit in the objective function.

Research management in general is related to research prioritization and
reduction of uncertainties. A “value of research” methodology was proposed by
Johnson and Diwekar (92) and Johnson and co-workers (130) for research man-
agement problems. This methodology tries to determine when imperfect informa-
tion is acceptable, and where should the scarce resources be allocated to leverage
the impact of these research efforts on the whole of its strategy. While reducing
uncertainty is profitable, the time required to achieve a reduction tempers the
benefit. This approach was applied recently to hybrid fuel cell power plants (131).

Robust Control. Control systems are used to keep the product specifica-
tions on target, to minimize deviations from the nominal process conditions, and
maintaining the safe operation of the plant. Control system design involves the
selection of input and output variables, the process model, appropriate type of
controller, and adjustment of the controller tuning parameters. Model uncer-
tainty and external disturbances are important concerns in designing control
systems.

One of the most important criteria for designing a control system is to
achieve robustness to these model uncertainties and disturbances. A probabilistic
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approach has been used by Schaper and co-workers (132) to achieve robust pro-
cess control. This probabilistic approach characterizes the model uncertainties by
probability distributions and a statistical measure of disturbance rejection for the
controller is incorporated into a robust control framework. The performance of the
controller is then characterized by a probability measure for all situations
between nominal and worst case conditions. Ratto and Paladino (133) considered
uncertainties in process and kinetic parameters for nonideal controlled CSTRs
and described a procedure to perform stability, sensitivity, and bifurcation analy-
sis by a Monte Carlo method. This procedure is used to identify most probable sta-
bility regions and to design a robust control system. Li and co-workers (134)
proposed a model predictive control strategy under chance constraints for robust-
ness. Both the model and disturbance uncertainties were considered and assumed
to be correlated multivariate stochastic variables. A stochastic program under
joint probabilistic constraints was formulated and using the HSS technique,
this problem was relaxed to a nonlinear programming problem.

In order to achieve robustness, parameter design methodology is also a
widely used method. It is termed as an off-line quality control method for design-
ing products and manufacturing processes that are robust in the face of
uncontrollable variations popularized by Taguchi (135). The variables affecting
a product’s performance are classified into two groups: (I) design parameters
whose nominal settings can be specified; (2) noise parameters that represent
uncontrollable variations over a product’s lifetime and across different units.
In order to relate the noisy input parameters to the process output, two different
approached could be used (1) physical experiments could be conducted by varying
the input parameters over the noise space to generate a response surface, or (2)
computational models could be developed. Monte Carlo methods are used for pro-
pagating the effects of input variability through a model and output variability is
studied. A sample of input vectors is generated that is representative of the
uncertainty distribution and outputs are evaluated at each of these samples.

The importance of sampling efficiency for generating these samples from
the multivariate space for the formulation of a stochastic optimization problem
for parameter design was emphasized in an earlier study by Diwekar and Rubin
(90) for off-line quality control of a continuous stirred tank reactor. Latin hyper-
cube sampling was used instead of Monte Carlo technique to reduce the required
number of samples. Later, Kalagnanam and Diwekar (13) applied the HSS
technique to this problem for further efficiency improvements exploiting the k-
dimensional uniformity properties of this technique. Another study related to
robust batch distillation column design using the HSS technique also illustrated
the usefulness of this approach (14). Sahin and Diwekar (136) demonstrated effi-
ciency of a new algorithm called better optimization of nonlinear uncertain sys-
tems (BONUS) for the same problem. Terwiesch and Agarwal (137) presented an
optimization procedure to achieve robustness in batch reactor optimal control
under parametric uncertainties. Probability distributions were used for the
uncertain process parameters and the expectation of cost function for the entire
parameter space was optimized.

Optimal Control. A challenging control problem that has received consid-
erable attention in the literature is optimal control, where an optimal trajectory
(future of action) for a control variable is computed by dynamic optimization, so
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as to maximize/minimize a performance index, eg, cost, product yield, or time. To
compute optimal control trajectories in the face of time-dependent uncertainties,
a stochastic maximum principle formulation was developed based on real options
theory and using a class of stochastic processes called Ito processes (51,138). By
using this methodology, thermodynamic model uncertainties in batch distillation
were characterized and stochastic optimal control profiles were computed
(47,51,139). Sampling techniques and stochastic modeling approaches were
used to characterize, quantify, and propagate uncertainties. This technique
improved the process performance objectives significantly in various case
studies.

In recent years, considering process design and control simultaneously has
become important. Sakizlis and co-workers (140) provided a review of recent
advances toward the integration of process design, process control, and process
operability, where time-varying disturbances and uncertainties are considered.
More recently, Pajula and Ritala (141) discussed the effects of measurement
uncertainty on process performance and how it should be accounted for in the
design of the control structure. For this purpose, dynamic scenarios were used
and were each assigned a probability of occurrence using the knowledge gained
from earlier experiences. This method was applied to a papermaking process
where the effect of measurement uncertainty of fiber and filler consistency (con-
centration) on controller performance was studied. For batch separations and
solvent recycling in the pharmaceutical industry, Ulas and Diwekar (142)
presented a framework that couples product design, process design, and optimal
control in the face of time-dependent uncertainties.

6. Conclusion and Future Trends

Sampling is an important element of uncertainty analysis, stochastic modeling,
and optimization algorithms used for chemical process design, operation, and
control. Sampling techniques are employed to sample probabilistic space of
uncertain variables commonly encountered in these applications. Apart from
uncertainty analysis, sampling also plays an important role in improving
efficiency of discrete, stochastic, and multiobjective optimization algorithms.
Sampling-based Monte Carlo methods are also an essential part of compu-
tational chemistry.

Monte Carlo sampling is the most commonly used sampling technique
based on pseudorandom numbers. This sampling technique has probabilistic
error bounds and requires large sample sizes to estimate the mean and standard
deviation for an uncertain variable. Therefore, variance reduction techniques
have been employed in order to increase efficiency. Importance sampling, LHS
and HSS are examples of variance reduction techniques. Importance sampling
is executed on the fact that some of the input random variables have more impact
on the parameter being estimated than others. These values are sampled more
frequently. On the other hand, LHS is a stratified sampling technique to reduce
the sample size. Hammersley sequence sampling and its variants are efficient
sampling techniques based on quasirandom numbers showing k-dimensional
uniformity properties.
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Because of increased environmental consciousness, traditional design
methods should include objectives, eg, environmental and health impacts, risk,
reliability and safety, as well as controllability and profitability, in earlier stages
of process design. Sampling techniques have various applications during the life
cycle of the plant, eg, chemical synthesis, process synthesis, and process
operations, eg, management and planning, supply chains, scheduling, control
and maintenance optimization, for better reliability. Environmental and
financial risk management are other applications where sampling is a crucial
step.

Future trends in sustainable process design require researchers to study
the connections between industries and ecosystems, which are the complex net-
works of humans, plants, animals and the environment (2). The effects of hazar-
dous chemicals and the activities of the chemical plants with the ecosystem need
to be modeled for enhanced decision making. These multifaceted models have
many steady-state and dynamic uncertainties and efficient sampling techniques
will play an important role in analysis.

Furthermore in the future, the applicability of efficient sampling techni-
ques, eg, HSS, needs to be examined for higher dimensional problems. There is
a loss of uniformity observed in quasirandom sequences for higher dimensions.
Leaping techniques (24,26) and combinations of quasirandom sequences are
used to improve the HSS technique to make it applicable to higher dimensional
problems and more work is needed in this area.
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