
THERMODYNAMICS

1. Introduction

Thermodynamics has its origins in the industrial age and the desire to develop
more efficient steam and other engines. Today, the realm of thermodynamics
includes the analysis of chemical and phase equilibria, of different types of
devices including fuel cells, and even biochemical and physiological processes.
Classical thermodynamics is a theory of very broad applicability built on a
small number of empirical observations. Indeed, Albert Einstein is reputed to
have said that ‘‘Classical thermodynamics. . .is the only physical theory of univer-
sal content concerning which I am convinced that, within the framework of
applicability of its basic concepts, will never be overthrown’’ (1). Classical ther-
modynamics deals with systems containing a very large number of molecules and
uses only overall properties of systems such as internal, kinetic and potential
energies, heat capacities, and equations of state (all to be discussed in this arti-
cle). This is different from statistical thermodynamics that starts with informa-
tion about individual molecules, such as their structure, bond lengths,
vibrational frequencies, and interactions and attempts to predict heat capacities,
equations of state, and other properties of a collection of molecules.
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Classical thermodynamics, henceforth referred to as thermodynamics here,
deals with changes that occur, generally from one equilibrium state to another as
a result of a change of constraint (for example, a pressure change) and/or an
energy flow in the form of work or heat entering or leaving the system. Here
by equilibrium state is meant a time-invariant state in which temperature and
pressure are spatially uniform, and the composition is uniform in each phase
(ie, vapor, liquid, or solid), although as we shall see, in a multiphase phase sys-
tem (ie, vapor þ liquid), the equilibrium compositions can be different in each
phase. The state of an equilibrium system is characterized by only a few bulk
properties usually temperature, pressure, density, and composition. Also, the
properties that describe an equilibrium thermodynamic state are properties of
that state only and not of the history of the system. This is different from a meta-
stable state of, for example, a polymer fiber or film whose properties depend on
the way the polymer was processed.

A problem not considered in thermodynamics is the rate at which such
changes in state occur. To be specific, if several chemicals that can react are
placed in a reactor, thermodynamics can be used to predict the maximum extent
of reaction that can occur; however, the rate at which such changes occur is the
realm of reaction kinetics and/or reactor design, not thermodynamics. Nonethe-
less, it is useful to include time in the development of thermodynamics, because
there is an arrow or direction of time in that many processes progress in only one
direction. For example, if a hot body and a cold body are brought into contact, as
time progresses, the temperature of the hot body decreases and that of the cold
body increases. This is most easily described mathematically by stating that the
derivative of the temperature of the hot body with time is negative and that of
the cold body is positive. Consequently, although we do not want to predict how
fast these temperature changes occur, it is useful to include time in the equations
so that we can determine the allowable directions of changes.

We present here an overview of chemical and chemical engineering thermo-
dynamics. References 2 to 6 have much more thorough presentations of this very
important subject.

2. Basis of Thermodynamics

Thermodynamics is built on four very general experimental observations. The
first is that relatively few properties are required to completely specify the equi-
librium state of a system. The second is that in any process (except a nuclear
reaction, which is not of interest to us here), mass is neither created nor
destroyed; that is, mass is conserved. The third observation is that total energy,
which consists of the sum of potential energy, kinetic energy, and the internal
energy of the molecules are conserved. [There is a third conserved property,
momentum; however, because rates and velocities are not of general interest
in thermodynamics, it is not used.] The final basis is not a conservation principle,
but the experimental observation that natural processes occur in a direction that
eliminates gradients in a system, and not the reverse. For example, an isolated
system, that is, a system that is not affected by changes (such as of temperature
or pressure) of its environment and closed to flows of mass and flows of energy
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(ie, heat and work flows), will eventually reach an equilibrium state of unifor-
mity in temperature, pressure, and density (if it consists of a single phase) or
of subregions of uniform temperature and pressure, but of different densities
if it consists of more than one phase (for example, a mixture of ice and water,
or of water and steam) and, in the case of mixtures, also of different compositions.

The equations of thermodynamics are written for a system, which may be
either a fixed mass or a fixed volume (for example, a steam engine); everything
external to the system is referred to as environment. The general form of the
equations for the differential change in some property y of the system, in
words, is
Rate of change of y in the system ¼

net flow rate of y into the system across the system boundaries þ
net rate at which is y generated within the system

and as an equation

dy
dt

¼
X
j

_yy j þ _yygen ð1Þ

where dy=dt is the infinitesimal change in y in the system, _yy j is the rate at which
y enters the system at entry port j, and _yygen is the rate at which y is generated
within the system. This last term is zero for a conserved property such as total
mass or total energy, but it is nonzero for any nonconserved property. For exam-
ple, in a multicomponent system, _yygen is positive for a species generated by a che-
mical reaction and negative for a reactant species. In writing these, and all
future, equations, a flow of mass or of energy as heat or work into the system
is considered a positive quantity and a flow out of the system is negative. For
a closed system, such as a block of metal or the contents of a sealed flask, each
of the _yy j is equal to zero. For a finite change in the system,

�y ¼
X
j

�y j þ ygen; ð2Þ

where �y indicates the change in property y, �y j is the net inflow of y into the
system at entry point j, and ygen is the amount of y that has been generated
within the system.

3. Thermodynamics of Pure Fluids

3.1. Thermodynamic Description of a System. The size and equili-
brium state of a thermodynamic system is completely specified by only a few
properties. Most commonly the thermodynamic state (but not the size) of a
single-component system is completely specified by its temperature (T) and pres-
sure (P). That is, if T and P are specified, other properties such as the density or
molar volume (V), refractive index, internal energy per mole (U), and other
molar properties such as enthalpy (H), entropy (S), Gibbs (G) and Helmholtz
(A) energies, all of which are defined later, are fixed. Indeed, any combination
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of a thermal property (such as temperature) and a mechanical property (such as
pressure or volume) completely fix the state of a one-component system. In addi-
tion to fix the total size or amount of the system, the total mass or number of
moles N would need to be specified either directly or by specifying information
from which this could be determined, for example, specifying the total volume
of the system V and V , so that N ¼ V=V .

The interrelationships between easily measurable properties such as tem-
perature and pressure and thermodynamic state variables (V , H, U, G, S and A)
may be available in one or more of several forms. For steam, oxygen, nitrogen,
methane, refrigerants, light hydrocarbons, and some other fluids of engineering
interest, there are specially prepared graphs and tables of properties. Also, for
many fluids either specific or generalized volumetric equations of state, that is
equations that interrelate P, V , and T, are available that together with heat
capacity data can be used to compute the change in thermodynamic properties
between any two states. The National Institute of Standards and Technology
(NIST; see Ref. 7) and others have prepared very detailed tables and equations
of state for some pure fluids and mixtures.

In thermodynamics, our interest is in the changes in internal energy,
enthalpy, entropy, and Gibbs and Helmholtz energies between two (equilibrium)
states. If there is no chemical reaction, the absolute values of these properties in
any state are not needed, only the change between states. There are two conven-
tional methods for choosing reference states for tables of thermodynamic data.
The first is to choose a temperature of absolute zero as the state at which the
energy and (by the third law of thermodynamics) the entropy in a pure, perfectly
ordered state are equal to zero. This choice has the disadvantage that to calculate
the properties at temperatures commonly of interest, heat capacity and other
data are needed from absolute zero to those temperatures. The second choice
is to (somewhat arbitrarily) choose for each substance a temperature and pres-
sure at which one energy-related property (typically the enthalpy or internal
energy) and one entropy-related property (the entropy or Gibbs or Helmholtz
energies) are set equal to zero. The disadvantage of this choice is that when che-
mical reactions are considered, a different choice of reference state is needed so
that correct heats of reaction will be obtained. Some thermodynamic property
tables, such as those from NIST mentioned above, are based on the first reference
state, whereas many tables used in engineering are based on the second choice.
For example, in the Steam Tables, liquid water at its vapor pressure at 0.018C
has been chosen as the reference state.

4. Mass Balance Equation

The balance equation for total mass of the one-component system shown in Fig. 1
in which there is no chemical reaction is

dM

dt
¼
X
j

_MMj ð3Þ

where M is total mass in the system and _MMj is the net rate at which mass
enters the system at j. As total mass is a conserved property, there is no internal
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generation term in this equation. The mass balance for any change (for example,
over the time interval from t1 to t2) is

�M ¼
X
j

M j ð4Þ

where �M is the change of mass in the system and Mj is the net flow of mass into
the system over the time interval. By dividing by the molecular weight of the
substance, these equations can be written on a molar basis:

dN

dt
¼
X
j

_NN j and �N ¼
X
j

N j ð5Þ

As some thermodynamic properties data are given on a molar basis, and as che-
mical reaction stoichiometry (which we consider later in this chapter) is written
in terms of mole numbers, for economy of presentation, all balance equations
hereafter will be written only on a molar basis.

5. The Energy Balance Equation: The First Law of Thermodynamics

The energy of a substance consists of three parts: the potential energy as a result
of its location in a gravitational, electric, or magnetic field; the kinetic energy as
a result of the translational velocity of its center-of mass and its rotational velo-
city; and the internal energy that arises from its chemical structure, the interac-
tions among its molecules, and the internal molecular rotations, vibrations, and
translations. Of these, the changes in overall kinetic and potential energies are
generally much smaller than the change in internal energy (except for isother-
mal, that is, constant temperature, systems) and will generally be neglected
here.

N4

N1
N2

N3

Fig. 1. General open system with several inlet and outlet streams. Adapted from Ref. 2,
with permission.
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Changes in the energy of a system result from heat flows into ( _QQ> 0) or out
of ( _QQ< 0) the system, the rate at which work being done on the system by its sur-
roundings ( _WW > 0) or by the system on its surroundings ( _WW < 0), and as a result of
each element of fluid that enters the system bringing with it its internal energy,
and that work is done in pushing the mass into or out of the system, as will be
clarified shortly. The rate-of-change form of the energy balance is

dðUÞ
dt

¼ dðNUÞ
dt

¼
X
j

_NN jðU þ PVÞ j þ _QQþ _WW � P
dV

dt
¼
X
j

ð _NNHÞ j þ _QQþ _WW � P
dV

dt

ð6Þ

where H ¼ U þ PV is the enthalpy. In this equation, U and V are the molar
internal energy and volume, respectively; the first term on the right-hand side
of the equation is the energy input to the system as a result of mass flows, the
second is the result of the heat flow, and the third term is the result of work flows
across the system boundary, for example, the flow of electricity or work being
supplied or extracted by a shaft or push rod that crosses the system boundaries.
The last term is the energy change resulting from movement of the system
boundaries. If the system expands against a constant external pressure P, the
rate at which mechanical work is done by the system on its surroundings is
P dV

dt (this is the three-dimensional analog of F dL
dt , where F is force and L is

length), with the negative sign indicating that if the system is expanding
dV
dt > 0, it is doing work on its surroundings, so the contribution of this term to
the system energy is negative. Note that as energy is conserved, there is no inter-
nal generation term. Finally, for those systems in which there are high flow velo-
cities and/or significant differences in the heights at which the flow streams
enter and leave, the external kinetic and potential energy terms may be impor-
tant. In those cases, H is replaced with H þmðv22 þghÞ, where m is the molecular
weight, v is the velocity, g is the gravitational constant, and h is the height with
respect to some reference.

For a change from state 1 to state 2, this equation becomes

�ðNUÞ ¼
X
j

Z2
1

_NN jH jdtþQþW �
Z2
1

PdV ð7Þ

Note that if the thermodynamic properties of each flow stream are constant (even
though the flow rates may vary), then each integral

R 2
1
_NN jH jdt can be replaced by

ð�NÞ jH j. However, if the thermodynamic properties in the process vary with
time, this integral can be very difficult to evaluate, and it is generally best to
make a different choice of system such that the integral does not appear. Also,
if the pressure on a surface undergoing expansion or contraction is constant,R 2
1PdV can be replaced by P�V . With both of these simplifications, the open sys-

tem energy balance is

�ðNUÞ ¼
X
j

ð�NÞ jH j þQþW � P�V ð8Þ
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and the energy balance for a closed system (ie, no mass flows) is

N�U ¼ QþW � P�V ð9Þ

The energy flow accompanying mass flow needs further discussion. To
do this, consider the adiabatic pressure-reducing valve operating in steady
state that receives fluid at Pin and Tin and exhausts it at Pout and Tout. This
system can described either as an open system with the boundaries as shown
in Fig. 2a for which the mass and energy balance equations are

0 ¼ _NNin � _NNout so that _NNout ¼ _NNin :

0 ¼ _NNinHðTin; PinÞ � _NNoutHðTout; PoutÞ or that HðTout; PoutÞ ¼ HðTin; PinÞ
ð10Þ

N1, P1, T1 N2, P2, T2

A

P1, T1 P2, T2

P1, T1 P2, T2

B

(a)

(b)

(c)

Valve  V

Valve  V

Valve  V

Fig. 2. Adiabatic valve or other pressure reducing device (Joule–Thomson expansion).
(a) Treated as an open system. (b) Initial state when treated as a closed system. (c) Final
state when treated as a closed system. Adapted from Ref. 2, with permission.
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An alternative way is to consider a fixed mass as the system, which as shown in
Fig. 2b initially consists of the fluid in the valve (denoted by V) and in the section
of the entry pipe enclosed by the dashed line and designated by the letter A, and
later is the fluid in the valve and that region B of the exit enclosed by the dashed
line in Fig. 2c. The mass balance for this system over the time it has taken for the
fluid in A to enter the valve and for the equal amount of fluid in B to leave is

Nfinal ¼ Ninitial or NB þNV ¼ NA þNV so that NB ¼ NA ð11Þ

because the valve is operating in steady state. The energy balance for this system
is

NBUout þNVUV �NAUin �NVUV ¼ NBUout �NAUin ¼ PinNAV in � PoutNBVout

ð12Þ

where the first term on the right is the work done by the upstream fluid in moving
the system boundary so as to push the fluid inA into the valve, and the second term
is the work the fluid does leaving the compressor by moving its boundary (and
pushing the fluid ahead of it out of the way). Using that NB ¼ NA gives

ðUout þ PoutVoutÞ � ðUin þ PinV inÞ ¼ 0 or HðTout;PoutÞ ¼ HðTin;PinÞ ð13Þ

This result is the same as in equation 10, which is as it should be, because a
process takes place independent of how we choose to describe it (i.e., as an open
system or as a closed system). Therefore, if correct, different descriptions should
lead to the same result, as is the case here. Also, examining the two descriptions,
it becomes evident that the reason the enthalpy appears in the flow terms of the
energy balance is that not only does a flow stream carry its internal energy, but
there is P–V work as a result of the fluid being pushed by the surrounding fluid
into the system, or by pushing other fluid out of its way as it leaves the system.
The adiabatic expansion here is referred to as a Joule–Thomson expansion. Typi-
cally in a Joule–Thomson expansion, the inlet temperature and pressure are
known, as is the outlet pressure (for example, atmospheric pressure), but the out-
let temperature is not known. It can be found from the known pressure and
enthalpy if a thermodynamic data table or chart is available.

In this example, common sense tells us that the upstream pressure P1 must
be greater than the downstream pressure P2 for the fluid to flow through the
valve in the direction indicated. However, there is nothing in the mass balance
or the energy balance that requires this. That is, the mass and energy balance
equations would still have a solution if one specified that the direction of fluid
flow should be in the unphysical direction from low pressure to high pressure.
This difficulty is resolved with the introduction of the next balance equation,
the second law of thermodynamics.

6. Entropy and the Second Law of Thermodynamics

Although the mass and energy balances are very useful, they do not provide the
information needed to solve all problems of interest. Furthermore, there is the
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missing element in that the mass and energy balance equations apply equally
well to any process and to the reverse of the process, and make no distinction
between them as shown in the example above. However, an important observa-
tion is that natural processes proceed in only one direction, toward an equili-
brium state, not away from such a state (ie, gradients spontaneously disappear
rather than appear, a fluid flow only occurs from a region of high pressure to
low pressure, and heat flows only occur from a high-temperature region to a
low-temperature region).

To bring into thermodynamics the concept that spontaneous processes
occur in one direction and not in reverse, a new thermodynamic function is
needed. Equation 1 for a closed, isolated system without mass, work or heat
flows, is

dy
dt

¼ _yygen ð14Þ

Now a property that is not conserved, that is, a property for which _yygen is not
zero as the process evolves, must be considered as there are no remaining con-
served properties. What is needed to describe the unidirectional nature of nat-
ural processes is a property whose rate of generation is either always positive
(so that the function y can only increase for a spontaneous process in an isolated
system) or is always negative (so it decreases). By convention, a property that
increases has been chosen, and that property is the entropy.

The entropy is not a directly measurable property (unlike temperature and
pressure), and it is defined by its equation of change. The rate of change of
entropy in an open system with a single heat flow is

dS

dt
¼ dðNSÞ

dt
¼
X
j

_NN jSj þ
_QQ

T
þ S

:

gen ð15Þ

where T is the absolute temperature (degrees Kelvin in the SI system). Defined
in this way, the rate of entropy generation _SSgen is always greater than or equal to
zero. For a closed system,

dðNSÞ
dt becomesN

dS
dt , and each _NN ¼ 0 so that

P
j
_NN jSj ¼ 0

and

dS

dt
¼ N

dS

dt
¼

_QQ

T
þ S

:

gen ð16Þ

and further for an adiabatic system: _QQ ¼ 0.
The change in entropy between two states at t1 and t2 is

�ðNSÞ ¼
Z2
1

X
j

_NN jSjdtþ
Z2
1

_QQ

T
dtþ Sgen ð17Þ

The entropy balance contains an integral of the product of a mass flow rate and
the entropy per unit mass of each flow stream. This can be difficult to evaluate
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unless the entropy per unit mass of the each flow stream is constant; in which
case,

Z2
1

X
j

_NN jSjdt ¼
X
j

ð�NÞ jS j

The following are other simplifications can be made in the entropy balance.

For a closed system, �ðNSÞ becomes N�S, and each _NN ¼ 0 so thatR 2
1

P
j
_NN jSjdt ¼ 0.

For an isothermal system,

Z2
1

_QQ

T
dt ¼ 1

T

Z2
1

_QQdt ¼ Q

T

For an adiabatic system, Q ¼ 0.

At equilibrium, when there are no longer any changes in a system, and the
values of all state properties are constant, the entropy generation term S

:

gen must
equal zero (otherwise the state property entropy would continue to increase,
whereas the state of the system is unchanged). The analysis here has only con-
sidered the overall system. If a microscopic approach is used to examine the gra-
dients within the system, the rate of entropy generation can be shown to be
proportional to the second power of the temperature gradients ðrTÞ2, with the
proportionality constant being related to the thermal conductivity of the sub-
stance for internal flows or the heat transfer coefficient at the surface of the sys-
tem, and the second power of the velocity gradients ðrvÞ2 or the stress tensor
with the proportionality constant being related to the viscosity.

As the entropy generation rate depends on the square of the system gradi-
ents, one can imagine a change of state that occurs so slowly that the gradients in
temperature rT and velocity rv are so small that the square of those terms can
be neglected. Such a process, called a reversible process, is characterized by a
zero rate of entropy generation; that is, S

:

gen ¼ Sgen ¼ 0. Although no process is
truly reversible, it is useful to consider such processes in two limiting cases. The
first is a process that occurs so slowly (compared with the internal relaxation
times of the substance) that the process may be considered to pass through a suc-
cession of equilibrium states, so that there is no entropy generation. The second
is a process that is not reversible, but it is useful to consider a reversible path
between the initial and the final states to obtain upper or lower bounds on the
heat and work flows.

Returning to the Joule–Thomson expansion, the entropy balance on the
steady-state adiabatic valve is

0 ¼ _NNinSin � _NNoutSout þ S
:

gen or that Sout �Sin ð18Þ
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because S
:

gen � 0 as there are significant temperature and pressure gradients
within the valve. Using that the enthalpy of the inlet and outlet streams of the
valve are equal, but that the entropy of the exit stream is greater than that of the
inlet stream and thermodynamic property charts (or even assuming ideal gas
behavior), leads to the conclusion that the pressure of the outlet stream must
always be lower than that of the inlet stream.

7. Interrelationships Between Thermodynamic Properties

As thermodynamic state variables (T, P, V , H, U, G, S and A) depend only the
state of the system, and not the path to that state, to compute changes in ther-
modynamic properties between states, it is useful to consider a reversible path.
In particular, for a closed system with a single heat flow and no work flow, we
have from the energy and entropy balances that

N
dU

dt
¼ _QQ� P

dV

dt
and N

dS

dt
¼

_QQ

T
ð19Þ

which when combined leads to

N
dU

dt
¼ NT

dS

dt
� P

dV

dt
¼ NT

dS

dt
�NP

dV

dt
ð20Þ

or as commonly written in thermodynamics (omitting the bottom half of the deri-
vative) as

dU ¼ TdS� PdV ð21Þ

Treating U as a function of S and V , using the chain rule of partial differentiation

dU ¼ qU
qS

� �
V

dSþ qU
qV

� �
S

dV ð22Þ

and comparing these two equations gives

qU
qS

� �
V

¼ T and
qU
qV

� �
S

¼ �P ð23Þ

Using the definition of enthalpy H ¼ U þ PV in equation 21 yields

dH ¼ TdSþ VdP ¼ qH
qS

� �
P

dSþ qH
qP

� �
S

dP ð24Þ

so that

qH
qS

� �
P

¼ T and
qH
qP

� �
S

¼ V ð25Þ
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Also, by simple rearrangement

dS ¼ 1

T
dU þ P

T
dV so that

qS
qU

� �
V

¼ 1

T
and

qS
qV

� �
U

¼ P

T
ð26Þ

and

dS ¼ 1

T
dH � V

T
dP so that

qS
qH

� �
P

¼ 1

T
and

qS
qP

� �
H

¼ �V

T
ð27Þ

Similarly, for the Gibbs energy using that G ¼ H � TS, we obtain

dG ¼ dH � TdS� SdT ¼ TdSþ VdP� TdS� SdT ¼ VdP� SdT

so that

qG
qP

� �
T

¼ V and
qG
qT

� �
P

¼ �S ð28Þ

and for the Helmholtz A ¼ U � TS,

dA ¼ dU � TdS� SdT ¼ TdS� PdV � TdS� SdT ¼ �PdV � VdT

qA
qV

� �
T

¼ �P and
qA
qT

� �
V

¼ �S ð29Þ

Two important relations come from the Maxwell equations, which are the
result of mixed second derivatives being equal regardless of the order in which
the derivatives are taken. For example,

q
qT V

qA
qV

� �
T

¼ � qP
qT

� �
V

¼ q
qV

�����
�����
T

qA
qT

� �
V

¼ � qS
qV

� �
T

ð30Þ

and

q
qT P

qG
qP

� �
T

¼ qV
qT

� �
P

¼ � qS
qP

� �
T

¼ q
qP

����
����
T

qG
qT

� �
P

ð31Þ

For a reversible change of state in an isothermal open system with only a
single flow stream of the same temperature as the system

dU

dt
¼ T

dS

dt
� P

dV

dt
þ dN

dt
ðH � TSÞ ¼ T

dS

dt
� P

dV

dt
þG

dN

dt
ð32Þ
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or

dU ¼ TdS� PdV þGdN ð33Þ

and

qU
qV

� �
N;S

¼ qU
qV

� �
S

¼ �P;
qU
qS

� �
N;V

¼ qU
qS

� �
V

¼ T and
qU
qN

� �
S;V

¼ G ð34Þ

Adding dðPVÞ to both sides of equation 33

dU þ dðPVÞ ¼ dH ¼ GdN � PdV þ TdSþ dðPVÞ ¼ GdN þ VdP þ TdS

so that

qH
qP

� �
N;S

¼ V ;
qH
qS

� �
N;P

¼ qH
qS

� �
P

¼ T; and
qH
qN

� �
S;P

¼ G ð35Þ

In a similar fashion

dS ¼ 1

T
dU þ P

T
dV �G

T
dN;

dA ¼ �SdT � PdV þGdN; and dG ¼ �SdT þ VdP þGdN
ð36Þ

from which we find

G ¼ qU
qN

� �
S;V

¼ qH
qN

� �
P;S

¼ qA
qN

� �
T;V

¼ qG
qN

� �
T;P

¼ �T
qS
qN

� �
U;V

¼ �T
qS
qN

� �
H;P

¼ m

ð37Þ

suggesting that the Gibbs energy is an especially important variable in thermo-
dynamics. Indeed, it appears so often that it is commonly designated by the
symbol m and referred to as the chemical potential of a species. Also,

qG
qT

� �
P

¼ �S and
qðG=TÞ

qT

� �
P

¼ � G

T2
þ 1

T

qG
qT

� �
P

¼ �H � TS

T2
� S

T
¼ � H

T2
ð38Þ

8. Heat Engines, Heat Pumps, and Turbines

Consider the engine schematically shown in Fig. 3, either operating in steady
state or over one complete cycle of a cyclic engine. The energy and entropy bal-
ances relating the amount of work the engine can deliver to the surroundings
(�W) from a flow of heat QH from a heat source (TH) into the engine and assum-
ing there is also a flow of heat QL at a lower temperature (TL) are

0 ¼ QH þQL þW ; 0 ¼ QH

TH
þQL

TL
þ Sgen; and QL ¼ �QH

TL

TH
� TLSgen ð39Þ
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so that

�W ¼ QH þQL ¼ QH 1� TL

TH

� �
� TLSgen ð40Þ

It can be shown that the maximum work attainable from a system for a
given change of state (or that the minimum work required to produce a given
change of state) occurs when the process occurs reversibly. Therefore, the largest
positive value of �W is obtained when Sgen ¼ 0, because if Sgen > 0 and a lesser
value of �W is obtained. When the process is carried out reversibly, the engine
efficiency is

maximumefficiency ¼ workproduced

heat supplied
¼ �W

QH
¼ 1� TL

TH
¼ TH � TL

TH
ð41Þ

which is the well-known Carnot efficiency of heat engines. This equation sets the
upper bound for the conversion of heat to work. It is important to note that ther-
modynamics is able to set this upper bound without any information about the
detailed workings of the heat engine. Also note from equation 41 that unless
the heat sink temperature TL is absolute zero, QL will be negative. That is,
there must be a heat flow out of the engine so that it cannot convert all the
heat it receives into work. This is the Kelvin–Planck statement of the Second
Law of Thermodynamics.

The heat engine does work on its surroundings by receiving heat at a high
temperature and rejecting it at a lower temperature, while the heat pump in
Fig. 3, of which a refrigerator and an air conditioner are examples, operates
in reverse by using work (frequently electrical energy) to accept heat at a low
temperature and reject it at a higher temperature. The efficiency of a heat
pump is measured by its coefficient of performance:

coefficient
of performance

¼ C:O:P: ¼ low temperature heat accepted

work required
¼ QL

W
ð42Þ

Heat
engine

Low temperature reservoir

High temperature reservoir

Q L

Q H

W
Heat
pump

Q L

Q H

W

Fig. 3. Heat engine and heat pump.
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For a Carnot cycle heat pump, the coefficient of performance is

CarnotC:O:P: ¼ QL

W
¼ TL

TH � TL
ð43Þ

Next consider the work that can be obtained in a steady-state flow process,
for example, from the turbine in Fig. 4 with an inlet stream of high-pressure
steam and an outlet stream that is low-pressure steam or a steam–water mix-
ture. The mass (mole), energy, and entropy balances for this process are as fol-
lows:

0 ¼ _NNin � _NNout so that _NNout ¼ _NNin

0 ¼ _NNinHðTin;PinÞ � _NNoutHðTout;PoutÞ þ _WW þ _QQ and

0 ¼ _NNinSðTin;PinÞ � _NNoutSðTout;PoutÞ þ
_QQ

Tq
þS

:

gen

ð44Þ

or

_QQ ¼ _NNin½TqSðTout;PoutÞ � TqSðTin;PinÞ� � TqS
:

gen and

� _WW ¼ _NNinf½HðTin;PinÞ � TqSðTin;PinÞ� � ½HðTout;PoutÞ

� TqSðTout;PoutÞ�g � TqS
:

gen

ð45Þ

where Tq is the temperature at which heat transfer occurs.
To obtain the maximum work possible from a given feed, any heat flow from

the device to the environment should be the ambient environmental temperature
Tamb (if not, a heat engine could be used to extract additional work from this
high-temperature heat), and for the same reason, the temperature of the exiting
stream should be ambient. The pressure of the exit stream should be the ambient
pressure as well; otherwise, a turbine could be used to extract additional work
from this flow stream. Finally, the process should be reversible so that
S
:

gen ¼ 0. Therefore, the maximum work that can be obtained from the initial
flow stream is

� _WW
max ¼ _NNin½GðTin; Pin; TambÞ �GðTout; PoutÞ� ð46Þ

P1

Q W

T1

P2

T2

Fig. 4. Turbine or other type of flow engine. Adapted from Ref. 2, with permission.
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where GðTin; Pin; TambÞ ¼ HðTin; PinÞ � TambSðTin; PinÞ is known as the avail-
ability function. Note that it is not a Gibbs energy, and its value depends on
two different temperatures.

9. Calculation of Changes in Thermodynamic Properties
on a Change of State

The energy and entropy balances are in terms of internal energy, enthalpy, and
entropy, whereas the directly measured properties are temperature and pressure
or temperature and volume. Therefore, it is necessary to interrelate these two
types of properties. Values of the

constant volumeheat capacity CV ¼ qU
qT

� �
V

or the constant pressure heat capacity CP ¼ qH
qT

� �
P

ð47Þ

are available for many substances in the ideal gas state or for others as an
incompressible liquid or solid. In both cases, CV and CP are only functions of
temperature:

CPðTÞ ¼ CVðTÞ þR ¼ aþ bT þ cT2 þ dT3 þ . . . for ideal gases and
CPðTÞ ¼ CVðTÞ ¼ aþ bT þ cT2 þ dT3 þ . . . for liquids and solids

ð48Þ

where R ¼ 8:314J=ðmolKÞ ¼ 8:314� 10�3 kPam3=ðmolKÞ is the gas constant.
For nonideal gases the heat capacities are also a fuction of temperature or

density.
An equation of state relating pressure, volume, and temperature, that is, a

P–V–T relation, may be available for the substance of interest or estimated from
a generalized correlation. Examples include

The simple ideal gas equation of state

P ¼ RT

V
ð49Þ

The commonly used Peng–Robinson equation of state (8)

P ¼ RT

V � b
� aðTÞ
VðV þ bÞ þ bðV � bÞ ð50Þ

in which the temperature-dependent parameter a(T) and the constant b are spe-
cific to each fluid. These parameters may be obtained by correlating vapor pres-
sure and density data, or more commonly by using generalized equations and the
critical properties of the fluid as described later. This equation can be used for
both gases and liquids of nonpolar compounds.
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The virial equation of state

PV

RT
¼ ZðT;PÞ ¼ 1þ BðTÞ

V
þ CðTÞ

V2
þ . . . ð51Þ

where B(T), C(T), . . ., etc are the temperature-dependent second, third, . . ., etc
virial coefficients. This equation can only be used for gases with the pressure/
density range depending on the number of terms kept in the expansion.

Extended virial equations such as the Benedict–Webb–Rubin equation (9):

PV

RT
¼ ZðT;PÞ ¼ 1þ B� A

RT
� C

RT2

� �
1

V
þ b� a

RT

� � 1

V2

þ aa

RTV5
þ b
RT3V

1þ g

V2

� �
exp � g

V2

� � ð52Þ

and others in this family can be used for both vapors and liquids; however, para-
meters are available for only a few substances. Information about these and
other equations of state and pure fluid and mixture properties can be found in
Refs. 10 and 11.

To compute how the entropy changes as a function of temperature and
volume, one starts with

dS ¼ qS
qT

� �
V

dT þ qS
qV

� �
T

dV ¼ qS
qU

� �
V

qU
qT

� �
V

dT þ qP
qT

� �
V

dV

¼ CV

T
dT þ qP

qT

� �
V

dV

ð53Þ

Similarly, as a function of T and P

dS ¼ qS
qT

� �
P

dT þ qS
qP

� �
T

dP ¼ CP

T
dT � qV

qT

� �
P

dP ð54Þ

Therefore,

dU ¼ TdS� PdV ¼ T
CV

T
dT þ qP

qT

� �
V

dV

" #
� PdV ¼ CVdT þ qP

qT

� �
V

�P

" #
dV

ð55Þ

and

dH ¼ TdSþ VdP ¼ T
CP

T
dT � qV

qT

� �
P

dP

� �
þ VdP ¼ CPdT þ V � T

qV
qT

� �
P

� �
dP

ð56Þ

These equations provide the relations needed to compute the change in thermo-
dynamic properties (S, U and H, and from those G and A) as a result of changes
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in temperature and pressure or temperature and volume knowing only heat
capacities and a volumetric equation of state. By using these equations, thermo-
dynamic tables (for example, the steam tables) and thermodynamic property dia-
grams (ie, the Mollier diagram, which is an entropy versus enthalpy diagram for
steam) have been developed.

As heat capacity data for fluids are generally available only at very low
pressures (the ideal gas state), and because thermodynamic state variables (T,
P, V , H, U, G, S and A) only depend on the state, and not the path to get to
that state, to calculate the change in a thermodynamic variable between two
states, the path used for the calculation is to first expand the fluid at the constant
initial temperature from the initial pressure to the ideal gas state (zero pressure
or infinite volume), heat or cool the fluid as necessary to the final temperature,
and then compress the fluid at constant final temperature to the final pressure.
That is,

HðT2;P2Þ �HðT1;P1Þ ¼
ZT1;P¼0

T1;P1

V � T
qV
qT

� �
P

� �
dP

þ
ZT2;P¼0

T1;P¼0

CPdT þ
ZT2;P2

T2;P¼0

V � T
qV
qT

� �
P

� �
dP

ð57Þ

SðT2;P2Þ � SðT1;P1Þ ¼ �
ZT1;P¼0

T1;P1

qV
qT

� �
P

dPþ
ZT2;P¼0

T1;P¼0

CP

T
dT �

ZT2;P2

T2;P¼0

qV
qT

� �
P

dP ð58Þ

SðT2;V2Þ � SðT1;V1Þ ¼
ZT1;V¼1

T1;V1

qP
qT

� �
V

dV þ
ZT2;V¼1

T1;V¼1

CV

T
dT þ

ZT2;V2

T2;V¼1

qP
qT

� �
V

dV ð59Þ

and

UðT2;V2Þ �UðT1;V1Þ ¼
ZT1;V¼1

T1;V1

T
qP
qT

� �
V

�P

" #
dV þ

ZT2;V¼1

T1;V¼1

CVdT

þ
ZT2;V2

T2;V¼1

T
qP
qT

� �
V

�P

" #
dV

ð60Þ

Thus, with heat capacity data at low pressure (the ideal gas state) and a volu-
metric equation of state (ie, a relation between P, V and T), the change in ther-
modynamic properties of a fluid between two states can be computed.
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For the case of an ideal gas, these equations reduce to

HIGðT2;P2Þ�HIGðT1;P1Þ ¼
ZT2

T1

CPdT ð61Þ

SIGðT2;P2Þ�SIGðT1;P1Þ ¼�
ZP2

P1

R

P
dPþ

ZT2;P¼0

T1;P¼0

CP

T
dT¼�R ln

P2

P1
þ

ZT2;P¼0

T1;P¼0

CP

T
dT ð62Þ

SIGðT2;V2Þ�SIGðT1;V1Þ ¼R ln
V2

V1

þ
ZT2;V¼1

T1;V¼1

CV

T
dT ð63Þ

and

UIGðT2;V2Þ �UIGðT1;V1Þ ¼
ZT2

T1

CVdT ð64Þ

For other equations of state, such as the virial and Peng–Robinson equations
mentioned earlier, the appropriate equations are found in Ref. 2 and elsewhere.

For a liquid or solid, which is considered incompressible (ie, ðqVqPÞT ¼ 0),

HðT2;P2Þ �HðT1;P1Þ ¼
ZP2

P1

VdPþ
ZT2

T1

CPdT ð65Þ

SðT2;P2Þ � SðT1;P1Þ ¼
ZT2

T1

CP

T
dT ð66Þ

SðT2;V2Þ � SðT1;V1Þ ¼
ZT2

T1

CV

T
dT ð67Þ

and

UðT2;V2Þ �UðT1;V1Þ ¼
ZT2

T1

CVdT ð68Þ

A residual property yres is defined as the difference between the property of
a real fluid and an ideal gas at the same temperature and pressure; ie,

yresðT;PÞ ¼ yðT;PÞ � yIGðT;PÞ ð69Þ

Each residual property is easily derived from the equations above.
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Finally, as we will see in the following and later sections, the Gibbs energy
is of special importance in equilibrium calculations. As a prelude to computing
changes in Gibbs energy between states, note that from equations 61 and 62,
the change in the molar Gibbs energy of an ideal gas between states of different
pressure but at the same temperature is

GIGðP2;TÞ �GIGðP1;TÞ ¼ RT ln
P2

P1
ð70Þ

Common terminology is to write this as

GIGðP;TÞ ¼ GIGðPo;TÞ þ RT ln
P

Po
¼ GoðTÞ þ RT ln

P

Po
ð71Þ

where Po is some fixed reference pressure (frequently 1 bar) and GoðTÞ, which is
only a function of temperature at the fixed reference pressure. In a pure fluid, the
chemical potential of a species designated by the symbol m is just equal to the
molar Gibbs energy, so that an alternative way of writing the equations above is

mIGðP2;TÞ � mIGðP1;TÞ ¼ RT ln
P2

P1
and mIGðP;TÞ ¼ moðTÞ þ RT ln

P

Po
ð72Þ

10. Equilibrium

As

_SSgen � 0away fromequilibrium; and _SSgen ¼ 0 at equilibrium ð73Þ

the condition for equilibrium in an isolated system is that

dS

dt
� 0away fromequilibrium; and

dS

dt
¼ 0 at equilibrium ð74Þ

Therefore, the mathematical criterion for equilibrium in an isolated system is
that the entropy of the system must be a maximum subject to the isolated system
constraints of no heat, work, or mass flows.

Other system constraints result in different equilibrium conditions. For
example, for a closed system at constant temperature and pressure,

dU

dt
¼ _QQ� P

dV

dt
and

dS

dt
¼

_QQ

T
þ S

:

gen ð75Þ

Combining these two equations by eliminating the heat flow _QQ, and recognizing
that because the temperature is constant dT

dt ¼ 0 and the pressure is constant
dP
dt ¼ 0 gives

dU

dt
¼ �P

dV

dt
þ T

dS

dt
� TS

:

gen or
dðU þ PV � TSÞ

dt
¼ dG

dt
¼ �TS

:

gen � 0 ð76Þ
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leading to the conclusion that the Gibbs energy is a minimum at equilibrium
subject to the constraints of constant mass (ie, a closed system), constant tem-
perature, and constant pressure. For a closed system at constant temperature
and constant volume, following the analysis above, now with dT

dt ¼ 0 and dV
dt ¼ 0

gives

dU

dt
¼ T

dS

dt
� TS

:

gen or
dðU � TSÞ

dt
¼ dA

dt
¼ �TS

:

gen � 0 ð77Þ

leading to the conclusion that the Helmholtz energy is a minimum at equilibrium
subject to the constraints of constant mass (ie, a closed system), constant tem-
perature, and constant volume.

As equilibrium states are of central importance in thermodynamics, equa-
tions 74, 76, and 77, which provide the path to computationally determining
the equilibrium state under various constraints, are exceptionally important
in thermodynamics.

11. Phase Equilibrium in a One-Component System

Consider a closed, one-component system at constant temperature and pressure
in which two phases, I and II, coexist at equilibrium. The distribution of mass
between the two phases is

N ¼ NI þNII ð78Þ

where N is the total number of moles in the system and NI and NII are the num-
ber of moles in each phase. The total Gibbs energy of this two-phase system is

NG ¼ NIGI þNIIGII ð79Þ

The condition for equilibrium for a closed system at constant temperature and
constant pressure is that the Gibbs energy should be a minimum, or that
dðNGÞ ¼ 0 for all possible system variations, which here is for all variations of
the number of moles in each phase, subject to the constraints of fixed tempera-
ture, fixed pressure, and fixed total number of moles that is

dN ¼ 0 ¼ dNI þ dNII; or dNII ¼ �dNI ð80Þ

Therefore, using

dG ¼ dðNGÞ ¼ �SdT þ VdP þGdN

results in

dðNGÞ ¼ GIdNI þGIIdNII ¼ ðGI �GIIÞdNI ¼ 0 ð81Þ
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for all changes in the number of moles in phase I, that is, for all values of dNI.
(Note that GI and GII cannot change because temperature and pressure are con-
stant.) The only way this can be true is for

GIðT;PÞ ¼ GIIðT;PÞ ð82Þ

So the temperature must be the same in both phases, and the pressure must be
the same in both phases, which are obvious, but also the molar Gibbs energy
must be the same in both phases, which is not an obvious result. In terms of
the chemical potential, these equations are

dG ¼ dðNGÞ ¼ �SdT þ VdP þ mdN and mIðT;PÞ ¼ mIIðT;PÞ ð83Þ

Next consider two-phase equilibrium in a closed system constrained to be at
constant temperature and constant volume. For this case, it was shown earlier
that the Helmholtz energy A is a minimum. So that

dA ¼ dðNAÞ ¼ �SdT � PdV þGdN

dA ¼ dAI þ dAII ¼ GIdNI þGIIdNII ¼ ðGI �GIIÞdNI
ð84Þ

and again that GIðT;PÞ ¼ GIIðT;PÞ or equivalently in terms of the chemical poten-
tial mIðT;PÞ ¼ mIIðT;PÞ. Indeed, the equality of temperature, equality of pressure,
and equality of Gibbs energies (or chemical potential) in the two phases are
obtained as the conditions for phase equilibrium independent of the constraints.

As at each temperature at which two phases are in equilibrium, along the
phase boundary, we have GIðT;PÞ ¼ GIIðT;PÞ and

dGIðT;PÞjs ¼ ½�SIdT þ V IdP�s ¼ dGIIðT;PÞjs ¼ ½�SIIdT þ V IIdP�s ð85Þ

or

dP

dT s
¼ SI � SII

V I � V II

�����
�����
s

where the symbol s indicates changes following the equilibrium temperature-
pressure line. However, by the equality of Gibbs energies,

GIðT;PÞ ¼ HIðT;PÞ � TSIðT;PÞ ¼ GIIðT;PÞ ¼ HIIðT;PÞ � TSIIðT;PÞ

SIðT;PÞ � SIIðT;PÞ ¼ HIðT;PÞ �HIIðT;PÞ
T

ð86Þ

so that

dP

dT s
¼ HI �HII

TðV I � V IIÞ

�����
�����
s

¼ �H

T�V
ð87Þ

which is the Clapeyron equation relating the change in equilibrium pressure with
temperature along a phase boundary to the enthalpy and volume differences on the
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phase change. This equation is applicable to liquid–vapor phase changes giving the
temperature variation of the vapor pressure, to solid–vapor phase changes giving
the temperature variation of the sublimation pressure, and to solid–liquid phase
changes giving the variation of the melting temperature with pressure.

For the case of vapor–liquid equilibrium at low pressure, for which
VV �VL; VV ¼ RT

P , and

dPvap

dT
¼ �L!VH

T�V
¼ Pvap�L!VH

RT2
or

d lnPvap

dT
¼ �L!VH

RT2
ð88Þ

which is the Clausius–Clapeyron equation. If the enthalpy (heat) of vaporization
is not a function of temperature, integrating this equation gives

lnPvapðTÞ ¼ ��L!VH

RT
þ A or lnPvapðTÞ ¼ A� B

T
ð89Þ

where A is an integration constant. To account for the variation of the heat
of vaporization with temperature, as the temperature (and, therefore, vapor pres-
sure) increases so that the vapor becomes progressively nonideal, equations such as

lnPvapðTÞ ¼ A� B

T þ C
or lnPvapðTÞ ¼ A� B

T
þ C lnT þDT6 ð90Þ

are used to describe the temperature variation of the vapor pressure from the melt-
ing point to the near critical point of a fluid. Other equations are given in Ref. 10.

Figure 5 is an example of a phase diagram showing the vapor, liquid, and
solid phases as a function of temperature and pressure (Fig. 5a) and temperature
and volume (Fig. 5b). At low temperatures, a solid is in equilibrium with a vapor;
this coexistence pressure is referred to as the sublimation pressure, and because
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Fig. 5. Phase behavior of a pure substance. (a) P - T plot showing the solid, liquid, vapor,
and supercritical fluid regions; the phase transition boundaries; and the critical and triple
points. (b) P - V plot for the same substance. The dashed lines are three representative
lines of constant temperature (isotherms), one below, one at, and one above the critical
temperature Tc. Note the inflection point along the critical isotherm at the critical point.
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the heat of sublimation �S!VH is positive and the molar volume of the vapor is
greater than that of the solid �S!VV > 0, the sublimation pressure increases
with increasing temperature. At low temperature and higher pressure, solid–
liquid equilibrium occurs. As �S!LH is positive and the molar volume of the
liquid is generally greater than that of the solid �S!LV > 0, the melting pressure
increases with increasing temperature, or equivalently, the melting temperature
increases with increasing pressure. Note, however, that for water, �S!LV < 0 so
that the melting temperature decreases with increasing pressure. Finally, at
temperatures above the melting temperature, vapor–liquid equilibrium occurs,
and because �L!VH> 0 and �V!LV > 0, the vapor pressure of a liquid Pvap

increases with increasing temperature.
As temperature increases, the increased molecular motion in the liquid

causes its molar volume to increase, whereas the increasing vapor pressure
results in a compression (decrease in molar volume) of the highly compressible
vapor. Along the vapor–liquid equilibrium line, a temperature-pressure point
is reached at which the densities or molar volumes of the vapor and liquid phases
become equal, and the two phases are indistinguishable. This is referred to as
the critical point of the fluid, where TC is the critical temperature and PC is
the critical pressure. At all higher temperatures, only a single fluid phase exists,
which is referred to as a supercritical fluid.

At the critical point,

qP
qV

� �
Tc

¼ 0 and
q2P

qV2

 !
Tc

¼ 0 ð91Þ
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Fig. 5. (Continued)
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These relations are used to determine values of the temperature-independent
part of the parameters in a generalized equation of state. For example, using
these conditions with the Peng–Robinson equation (8) gives

b ¼ 0:07780
RTc

Pc
and aðTÞ ¼ 0:45724

R2T2
c

Pc
1þ k 1�

ffiffiffiffiffiffi
T

Tc

s !" #2
;

with k ¼ 0:37464þ 1:54226o� 0:26992o2

The empirical temperature dependence of the a(T) term has been introduced to
provide a good representation of the vapor pressure as a function of temperature
using the acentric factor

o ¼ �1:0� log10

PvapðT ¼ 0:7TcÞ
Pc

� �
ð93Þ

12. Fugacity

For real fluids, in analogy with ideal gases, the fugacity of a species is defined as

GðP;TÞ ¼ GoðTÞ þ RT ln
f ðT;PÞ
Po

or mðP;TÞ ¼ moðTÞ þRT ln
f ðT;PÞ
Po

ð94Þ

and equivalently as

GðP;TÞ ¼ GIGðP;TÞ þ RT ln
f ðT;PÞ

P
or mðP;TÞ ¼ mIGðP;TÞ þRT ln

f ðT;PÞ
P

ð95Þ

In fact, using the Gibbs energy or chemical potential directly in calculations is
generally not convenient since, as can be seen from equations 70 and 94, this
function goes to negative infinity as the pressure becomes very low (for example,
the low sublimation pressure of a solid). It is more convenient to use the fugacity
in such calculations, which can be calculated from

f ðT;PÞ ¼ P exp
GðT;PÞ �GIGðT;PÞ

RT

" #
¼ P exp

1

RT

ZP
P¼0

V � RT

P

� �
dP

2
4

3
5 ð96Þ

Note that mathematically the fugacity is better behaved in that as P! 0, so
that the fluid becomes an ideal gas, f ðT;PÞ!P. Substituting the fugacity into
equation 82 gives as the condition for phase equilibrium:

f IðT;PÞ ¼ f IIðT;PÞ ð97Þ

The fugacity can be computed in several ways, depending on the data available.

1. If an equation of state is available, it may be used directly to compute the
fugacity. For example, if the fluid is an ideal gas, one obtains f ðT;PÞ ¼ P. If
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more complicated equations of state, for example, the van der Waals or
Peng–Robinson equations are used, as these are more easily solved for P
as a function of V than for V as a function of P, it is best to use the equiva-
lent transformed equation

ln
f ðT;PÞ

P
¼ lnfðT;PÞ ¼ 1

RT

ZVðT;PÞ

V¼1

RT

V
� P

� �
dV � lnZþ ðZ� 1Þ ð98Þ

where ZðT;PÞ ¼ PVðT;PÞ
RT is the compressibility factor and f is the fugacity

coefficient. This equation can be used for both gases and liquids, if an equa-
tion of state is available.

2. If an equation of state is not available, which is likely to be the case for a
liquid (or solid), but data are available on the molar volume as a function of
temperature and pressure, equation 96 can be integrated directly

ln
f ðT;PÞ

P
¼ 1

RT

ZPvapðTÞ

P¼0

VV � RT

P

� �
dPþ 1

RT

ZP
PvapðTÞ

VL �RT

P

� �
dP

¼ ln
f ðT;PÞ

P

����
Pvap

þ ln
PvapðTÞ

P
þ 1

RT

ZP
PvapðTÞ

VLdP

or

f ðT;PÞ ¼ PvapðTÞ f ðT;PÞ
P

����
Pvap

exp

ZP
PvapðTÞ

VL

RT
dP

2
64

3
75

� PvapðTÞ f ðT;PÞ
P

����
Pvap

exp
VLðP� PvapðTÞÞ

RT

" # ð99Þ

In the last integral term, which is referred to as the Poynting correction, we
have used the fact that most liquids are not very compressible; that is, the
volume does not change much with pressure and can be taken out of the
integral. Several approximations can be made to this equation. If the total
pressure is low, and the temperature is such that the vapor pressure of the
liquid (or sublimation pressure of a solid) is low, then for a liquid or solid

f ðT;PÞ ¼ PvapðTÞ: ð100Þ

If the pressure on the liquid is much above the vapor pressure, and the va-
por pressure is low,

f ðT;PÞ ¼ PvapðTÞ exp VLðP� PvapðTÞÞ
RT

" #
ð101Þ
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13. Thermodynamics of Mixtures

13.1. Partial Molar Properties. The thermodynamics of mixtures is
complicated by the fact that there is an additional variable, the composition of
the mixture, and all thermodynamic properties depend on composition. That
is, yðN1;N2; . . .NC;T;PÞ ¼ NyðN1;N2; . . .NC;T;PÞ, where y is any molar state
property, Ni is the number of moles of species i, and N is the total number of
moles in the system. Then,

dNyðN1;N2; . . . ;NC;T;PÞ ¼
qNy
qT

� �
P;N1;N2::

dT

þ qNy
qP

� �
T;N1;N2::

dPþ
XC
i¼1

qNy
qNi

� �
T;P;Nj 6¼ i

dNi

ð102Þ

where the subscript Nj 6¼ i signifies that all mole numbers other than i are held
constant in taking the partial derivative. Defining a partial molar property as

�yyiðT;P; x1; x2; . . .Þ ¼
qNy
qNi

� �
T;P;Nj 6¼ i

ð103Þ

gives

dNyðN1;N2; . . . ;NC;T;PÞ¼
qNy
qT

� �
P;N1;N2::

dT þ qNy
qP

� �
T;N1;N2::

dPþ
XC
i¼1

�yyiðT;P; xÞdNi

ð104Þ

where we have used that any molar or partial property of a mixture depends on
the mole fractions xi ¼ Ni=

PC
j¼1Nj rather than on the number of moles of each

species. That is, increasing or decreasing the number of moles of each species
by the same factor so that the mole ratios (and mole fractions) remain the
same leaves the molar property of a mixture unchanged. It is then easily
shown that (2)

Nyðx1; x2; . . . ; xC;T;PÞ ¼
XC
j¼1

Nj
�yy jðx1; x2; . . . ; xC;T;PÞ ð105Þ

or

yðx1; x2; . . . ; xC;T;PÞ ¼
XC
j¼1

x j
�yy jðx1; x2; . . . ; xC;T;PÞ ð106Þ

Note that because all mole fractions must sum to one, there are only C-1 indepen-
dent mole fractions in a C-component system.
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Thermodynamic state properties are then obtained as the mole fraction
weighted sum of the partial molar properties of the system; ie,

Vðx1; x2; . . . ; xC;T;PÞ ¼
XC
j¼1

x j
�VVjðx1; x2; . . . ; xC;T;PÞ;

Hðx1; x2; . . . ; xC;T;PÞ ¼
XC
j¼1

x j
�HHjðx1; x2; . . . ; xC;T;PÞ; etc:

ð107Þ

The physical interpretation of a partial molar property can be seen by con-
sidering, for example, how the total volume of a mixture changes as a result of
adding a very small amount of species 1, �N1, to a mixture. The volume change
is

VðN1 þ�N1;N2; . . .NC;T;PÞ � VðN1;N2; . . .NC;T;PÞ ¼ �V

¼ ½ðN1 þ�N1Þ �VV1 þN2
�VV2 þN3

�VV3 . . . . . .� � ½N1
�VV1 þN2

�VV2 þN3
�VV3 . . . . . .�

ð108Þ

Now in the limit of �N1 going to zero, the partial molar properties before and
after the addition of �N1 can be considered to be identical, so that

lim
�N1 ! 0

�V ¼ �N1 � �VV1 or lim
�N1 !0

�V

�N1
¼ �VV1 ð109Þ

That is, the volume change of the mixture resulting from the addition of a very
small number of moles of a species is proportional to the partial molar volume of
that component, not to its pure component molar volume. The pure component
and partial molar volumes are different. For example, the partial molar volume
of a small amount of electrolyte added to an aqueous solution may be negative
due to electrostriction.

14. Notation for Chemical Reactions and the Balance
Equations for a Mixture

A general chemical reaction can be written as

aAþ bBþ . . . > rRþ sSþ . . .

which will be written as

rRþ sSþ . . .� aA� bB� . . . ¼ 0 or
XC
i¼1

niIi ¼ 0 ð110Þ

where I is the chemical formula of species i and ni is its stoichiometric coefficient
(positive for reaction products and negative for reactants). Using this notation,
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the number of moles of species i present at any time if Ni,initial moles of species i
were initially in a system in which only a single reaction occurs is

Ni ¼ Ni;initial þ niX where X ¼ Ni �Ni;initial

ni
ð111Þ

is the molar extent of reaction and has the important property that it has the
same value for each species in the mixture.

The general form of the mass (mole) balance for a species i in a reacting
mixture is

dNi

dt
¼
X
j

_NNi; j þ
dNi

dt

� �
rxn

ð112Þ

where _NNi; j is the flowrate of species i and entry point j and the last term is the
rate at which species i is produced (þ value) or consumed (� value) by the che-
mical reaction. This last term is the rate of internal generation (or destruction) of
the species, because the number of moles of a species in a chemically reacting
system is not a conserved species (although total mass is). The change in the
number of moles of species i over a time interval is

�Ni ¼
X
j

Ni; j þ ð�NiÞrxn ð113Þ

Using the molar extent of reaction, these balances become

dNi

dt
¼
X
j

_NNi; j þ ni
dX

dt
and �Ni ¼

X
j

Ni; j þ ni�X ð114Þ

The energy balance is

dðNUÞ
dt

¼
X
j

ð _NNHÞ j þ _QQþ _WW � P
dV

dt
ð115Þ

which is the same as the pure component energy balance, as we have previously
identified all energy flows into and out of the system. However, in using this bal-
ance equation, the internal energy, enthalpy, and volume need to be computed
from their partial molar properties; that is,

U ¼ NU ¼
XC
i¼1

Ni
�UUi; ð _NNHÞ j ¼

XC
i¼1

_NNi
�HHi

 !
j

; and V ¼ NV ¼
XC
i¼1

Ni
�VVi ð116Þ

The energy balance for the change between states 1 and 2 is

�U ¼ �ðNUÞ ¼
X
j

Z2
1

ð _NNHÞ jdtþQþW �
Z2
1

PdV ð117Þ
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Similarly, the entropy balances are

dS

dt
¼ dðNSÞ

dt
¼
X
j

ð _NNSÞ j þ
_QQ

T
þ S

:

gen ð118Þ

and

�S ¼ �ðNSÞ ¼
Z2
1

X
j

ð _NNSÞ jdtþ
Z2
1

_QQ

T
dtþ Sgen ð119Þ

where

S ¼ NS ¼
XC
i¼1

Ni
�SSi and ð _NNSÞ j ¼

XC
i¼1

_NNi
�SSi

 !
j

ð120Þ

Notice that the reaction term and the heat of reaction do not explicitly
appear in the energy and entropy balances. However, they are contained therein,
but implicitly. To see this, consider the isothermal continuous flow stirred tank
reactor operating in steady state and schematically shown in Figure 6. The mass
and energy balances for this reactor are

dNi

dt
¼ 0 ¼ Ni;in �Ni;out þ ni

dX

dt
or Ni;out ¼ Ni;in þ ni

dX

dt
ð121Þ

and

dðNUÞ
dt

¼ 0 ¼
XC
i¼1

Ni;in
�HHi;inðT;P; xinÞ �

XC
i¼1

Ni;out
�HHi;outðT;P; xoutÞ þ _QQ ð122Þ

T, P
Ci, Hi

Reactor
inlet
stream

Reactor
outlet
stream

qout

Ci,out , Hi,out , Ni,out

_

_

qin

Ci,in , Hi,in , Ni,in

_

Heating or
cooling coil

Fig. 6. Continuous flow stirred reactor. Adapted from Ref. 2, with permission.
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_QQ ¼
XC
i¼1

Ni;out
�HHi;outðT;P; xoutÞ �

XC
i¼1

Ni;in
�HHi;inðT;P; xinÞ

¼
XC
i¼1

ðNi;in þ ni
dX

dt
Þ �HHi;outðT;P; xoutÞ �

XC
i¼1

Ni;in
�HHi;inðT;P; xinÞ

¼
XC
i¼1

ni
dX

dt
�HHi;outðT;P; xoutÞ þ

XC
i¼1

Ni;in½ �HHi;outðT;P; xoutÞ � �HHi;inðT;P; xinÞ�

¼ �rxnHðT;P; xoutÞ
dX

dt
þ
XC
i¼1

Ni;in½ �HHi;outðT;P; xoutÞ � �HHi;inðT;P; xinÞ�

ð123Þ

The first term on the right is the product of the enthalpy change (heat) of
reaction and rate of reaction, and the second term, which is generally very
much smaller and usually neglected, depends on how the partial molar
enthalpy changes with composition. We see from this equation that the heat
flow (either in for an endothermic reaction or out for an exothermic reaction)
to keep the reactor at constant temperature is directly proportional to the heat
of the reaction. Thus, although the heat of the reaction does not explicitly
appear in the energy balance of equation 115, it is contained implicitly through
the change in the mole numbers of each species as a result of the chemical
reaction.

15. State Properties of Mixtures and the Gibbs–Duhem Equation

Considering the Gibbs energy to be a function of temperature, pressure, and the
number of moles of each species, using the chain rule of partial differentiation
and the definition of a partial molar property, we have

dG ¼ qG
qT

� �
P;Ni

dT þ qG
qP

� �
T;Ni

dPþ
XC
i¼1

qG
qNi

� �
T;P;Nj 6¼ i

dNi

¼ �SdT þ VdP þ
XC
i¼1

�GGidNi

ð124Þ

In analogy with the pure fluid, defining the chemical potential of a species in a
mixture to be equal to the partial molar Gibbs energy, �mmi ¼ �GGi, one obtains

dG ¼ �SdT þ VdP þ
XC
i¼1

�mmidNi ð125Þ

Similarly, following the same procedure as used in the analysis of pure fluids,
one obtains
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dH ¼ TdSþ VdP þ
XC
i¼1

�GGidNi ¼ TdSþ VdP þ
XC
i¼1

�mmidNi ð126Þ

dU ¼ TdS� PdV þ
XC
i¼1

�GGidNi ¼ TdS� PdV þ
XC
i¼1

�mmidNi ð127Þ

and

dA ¼ �SdT � PdV þ
XC
i¼1

�GGidNi ¼ �SdT � PdV þ
XC
i¼1

�mmidNi ð128Þ

Note that one can also write

dG ¼ d
XC
i¼1

Ni
�GGi

 !
¼
XC
i¼1

�GGiðdNiÞ þ
XC
i¼1

Nid �GGi ¼
XC
i¼1

�mmiðdNiÞ þ
XC
i¼1

Nid�mmi ð129Þ

Subtracting equation 129 from equation 124 gives the Gibbs–Duhem equation

0 ¼ �SdT þ VdP�
XC
i¼1

Nid �GGi ¼ �SdT þ VdP�
XC
i¼1

Nid�mmi ð130Þ

For systems at constant temperature and constant pressure, this equation
becomes

XC
i¼1

Nid �GGi ¼ 0 and
XC
i¼1

xid �GGi ¼ 0 or equivalently

XC
i¼1

Nid�mmi ¼ 0 and
XC
i¼1

xid�mmi ¼ 0

ð131Þ

This equation is a constraint on how the partial molar Gibbs energy of each spe-
cies in a mixture can change as a result of changes in composition. For a binary
mixture, this equation is

x1
q �GG1

qx1

� �
T;P

þ x2
q �GG2

qx1

� �
T;P

¼ 0 ¼ x1
q�mm1
qx1

� �
T;P

þ x2
q�mm2
qx1

� �
T;P

ð132Þ

It can be shown using similar arguments that for other partial molar properties,
the analogous equation

x1
q�yy1
qx1

� �
T;P

þ x2
q�yy2
qx1

� �
T;P

¼ 0 ð133Þ

applies. Equations 132 and 133 are useful in several ways, including in the
experimental determination of partial molar properties and in testing the consis-
tency of experimental data.
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16. The Ideal Gas Mixture

An ideal gas mixture (IGM) is one in which at all temperatures, pressures, and
compositions, the volumetric equation of state is

PV IGM ¼ NRT ¼ RT
XC
i¼1

Ni ð134Þ

and the internal energy of the mixture is related to that of the pure components
as ideal gases (IG) by

UIGMðT;P;NÞ ¼
XC
i¼1

NiU
IG
i ðT;PÞ ð135Þ

from which it follows that

�VV
IGM
i ðT;P; xÞ ¼ RT

P
¼ V IG

i ðT;PÞ; �UUIGM
i ðT;P; xÞ ¼ UIG

i ðT;PÞ;

and

�HH
IGM
i ðT;P; xÞ ¼ HIG

i ðT;PÞ ð136Þ

The partial molar entropy of an ideal gas mixture is somewhat more com-
plicated. Forming an ideal gas mixture from its pure components at constant
temperature and constant pressure results in each component i before mixing
being contained in a volume

Vi;initial ¼
NiRT

P
ð137Þ

and after mixing being contained in the larger volume

Vfinal ¼
NRT

P
¼
PC

i¼1NiRT

P
ð138Þ

As was shown earlier

dS ¼ CV

T
dT þ qP

qT

� �
V

dV

which at constant temperature for an ideal gas becomes

dSIG ¼ qP
qT

� �
V

dV ¼ R

V
dV ð139Þ
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In preparing an ideal gas mixture at constant temperature and constant
pressure from its pure components at the same temperature and pressure,
each species i experiences the change in accessible volume above so that

Si;finalðT;P; xÞ � Si;initialðT;PÞ ¼ R ln
V finalðT;P; xÞ
Vi;initialðT;PÞ

¼ R ln
RT
PC

i¼1Ni=P

RTNi=P
¼ R ln

1

xi
¼ �R lnxi

ð140Þ

As the final state of the species is in a mixture, the final entropy is the partial
molar entropy, so that the relation between the ideal gas mixture partial
molar entropy and the pure component molar entropy at the same temperature
and same pressure is

�SS
IGM

i ðT;P; xÞ ¼ SIG
i ðT;PÞ � R lnxi ð141Þ

It then follows that

�GG
IGM

i ðT;P; xÞ ¼ GIG
i ðT;PÞ þRT lnxi and �AA

IGM

i ðT;P; xÞ ¼ AIG
i ðT;PÞ þ RT lnxi

ð142Þ

17. The Ideal Mixture and Excess Properties

An ideal mixture (IM) is one in which at all temperatures and pressures,

�VV
IM
i ðT;P; xÞ ¼ ViðT;PÞ and �UU

IM
i ðT;P; xÞ ¼ UiðT;PÞ ð143Þ

Although these look like the relations for an ideal gas mixture, they differ from
those in the very important way that the pure component properties here are
those of the real substance (in its gas, liquid, or solid state), and not those of
an ideal gas. From these properties, one obtains

�HH
IM
i ðT;P; xÞ ¼ HiðT;PÞ; �SS

IM

i ðT;P; xÞ ¼ SiðT;PÞ �R lnxi;

�GG
IM

i ðT;P; xÞ ¼ GiðT;PÞ þ RT lnxi and �AA
IM

i ðT;P; xÞ ¼ AiðT;PÞ þ RT lnxi

ð144Þ

Very few mixtures are ideal mixtures (and fewer still are ideal gas mix-
tures). One way to indicate the deviation from ideal mixture behavior is to use
the difference between the properties of the real mixture and that of an ideal
mixture of the same components at the same temperature, same pressure, and
same state of aggregation (that is, the pure components should be in the same
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phase when pure as they are in the mixture). The excess properties are defined
as

VexðT;P; xÞ ¼
XC
i¼1

Ni
�VViðT;P; xÞ �

XC
i¼1

NiViðT;PÞ ¼
XC
i¼1

Ni½ �VViðT;P; xÞ � ViðT;PÞ�

UexðT;P; xÞ ¼
XC
i¼1

Ni½ �UUiðT;P; xÞ �UiðT;PÞ�

HexðT;P; xÞ ¼
XC
i¼1

Ni½ �HHiðT;P; xÞ �HiðT;PÞ�

SexðT;P; xÞ ¼
XC
i¼1

Ni½ �SSiðT;P; xÞ � ½SiðT;PÞ � R lnxi��

GexðT;P; xÞ ¼
XC
i¼1

Ni½ �GGiðT;P; xÞ � ½GiðT;PÞ þ RT lnxi��

ð145Þ

and

AexðT;P; xÞ ¼
XC
i¼1

Ni½ �AAiðT;P; xÞ � ½AiðT;PÞ þ RT lnxi��

It then follows that for any partial molar property �yyiðT;P; xÞ,

�yyiðT;P; xÞ ¼ �yyIMi ðT;P; xÞ þ �yyexi ðT;P; xÞ ð146Þ

or

�yyiðT;P; xÞ ¼ yiðT;PÞ þ �yy
ex
i ðT;P; xÞ; if y ¼ V ;U orH

�yyiðT;P; xÞ ¼ yiðT;PÞ þ �yy
ex
i ðT;P; xÞ � RT lnxi; if y ¼ G orA

and

�SSiðT;P; xÞ ¼ SiðT;PÞ þ �SS
ex

i ðT;P; xÞ þ R lnxi ð147Þ

One procedure for estimating the properties of mixtures is to calculate separately
the pure component and excess properties, which leads to the activity coefficient
description to be used shortly.

18. Criteria for Phase and Chemical Equilibrium
in Multicomponent Mixtures

The energy and entropy balances for the multicomponent system considered above
are identical in form to those for a pure component, and they differ only in that the
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properties are now calculated as a sum over all components of the mole fraction (or
mole number) weighted partial molar properties. It therefore follows that the same
general criteria equilibrium developed earlier apply here as well.

EntropyS is amaximum for a closed system maintained at constantU andV
Helmholtz energyA is a minimum for a closed system

maintained at constantT andV
Gibbs energyG is a minimum for a closed system at constantT andP:

ð148Þ

Consider the closed container shown in Figure 7 that is held at fixed tem-
perature and fixed pressure, in which there is no chemical reaction and within
which two phases are at equilibrium, either a vapor and a liquid, two liquids, a
solid and a liquid, or a solid and a vapor. We denote these two phases as I and II,
and the number of moles of each species is

Ni; total ¼ NI
i þNII

i ð149Þ

As shown, the condition for equilibrium is that the total Gibbs energy should be a
minimum, which here the sum of the Gibbs energies of the two phases

G ¼ GI þGII ¼
XC
i¼1

NI
i
�GG
I

iðT;P; xIÞ þ
XC
i¼1

NII
i
�GG
II

i ðT;P; xIIÞ ð150Þ

subject to the constraints of constant (and uniform) temperature, constant (and
uniform) pressure, and constant total number of moles of each species (as there is
no chemical reaction). To find the equilibrium state, dG is set to zero subject to
dNi; total ¼ 0 ¼ dNI

i þ dNII
i ordNII

i ¼ �dNI
i . Thus,

dG ¼ 0 ¼ dGI þ dGII ¼
XC
i¼1

�GG
I

iðT;P; xIÞdNI
i þ

XC
i¼1

�GG
II

i ðT;P; xIIÞdNII
i

þ
XC
i¼1

NI
i d

�GG
I

iðT;P; xIÞ þ
XC
i¼1

NII
i d

�GG
II

i ðT;P; xIIÞ
ð151Þ

Vapor
y = y1, y2, y3...

Liquid
x = x1, x2, x3...

Fig. 7. Closed container containing a vapor and liquid in equilibrium.
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Each of the last two terms is separately equal to zero by the Gibbs–Duhem equa-
tion (eq. 131) applied to each phase and using dNII

i ¼ �dNI
i gives

0 ¼
XC
i¼1

½ �GGI

iðT;P; xIÞ � �GG
II

i ðT;P; xIIÞ�dNI
i ð152Þ

As this must be true for all variations of the independent variables, that is, for all
values of each dNI

i , the condition for phase equilibrium is

�GG
I

iðT;P; xIÞ ¼ �GG
II

i ðT;P; xIIÞ or �mmIiðT;P; xIÞ ¼ �mmIIi ðT;P; xIIÞ for each species i

ð153Þ

To obtain the condition for chemical equilibrium of a single reaction in a
closed single-phase system at constant temperature and constant pressure, the
starting point is again that the Gibbs energy must be a minimum, so that

dG ¼ 0 ¼
XC
i¼1

�GGiðT;P; xÞdNi þ
XC
i¼1

Nid �GGiðT;P; xÞ ð154Þ

The second term on the right-hand side is zero by the Gibbs–Duhem equation.
Here, however, each mole number is not independent, but interrelated to all
others by stoichiometry through the molar extent of reaction variable. That is,
dNi ¼ nidX, so that

0 ¼
XC
i¼1

ni �GGiðT;P; xÞdX or 0 ¼
XC
i¼1

ni�mmiðT;P; xÞdX ð155Þ

for all possible variations of X, that is, all values of dX (consistent with the con-
straints, such as initial numbers of moles of each species). So the condition for
chemical equilibrium in a single-reaction system is

XC
i¼1

ni �GGiðT;P; xÞ ¼
XC
i¼1

ni�mmiðT;P; xÞ ¼ 0 ð156Þ

The generalization to multireaction systems is

XC
i¼1

ni j �GGiðT;P; xÞ ¼
XC
i¼1

ni j�mmiðT;P; xÞ ¼ 0 for each reaction j ð157Þ

where nij is the stoichiometric coefficient for species i in reaction j. To avoid redun-
dancies and unnecessary complications in a multireaction system, it is only neces-
sary to consider a set of independent reactions. That is, a set of reactions in which
no reaction is a linear combination of the others. It is important to note that
although there will not be a unique independent reaction set, that is, several
independent reaction sets can be formed from a set of redundant reactions, all
will have the same number of independent reactions, and any one of the sets
can be used in thermodynamic calculations and will lead to the same result.

The further generalization to a multireaction, multiphase system is

�GG
I

iðT;P; xIÞ ¼ �GG
II

i ðT;P; xIIÞ or �mmIiðT;P; xIÞ ¼ �mmIIi ðT;P; xIIÞ for each species i ð158Þ
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and

XC
i¼1

ni j �GG
P

i ðT;P; xPÞ ¼ 0 ¼
XC
i¼1

ni j�mmPi ðT;P; xPÞ for each reaction j in each phaseP

Note that by phase equilibrium condition (eq. 153), if the chemical equilibrium
condition (eq. 147) is satisfied in one phase, it will be satisfied in all phases. How-
ever, the compositions that satisfy these equations will be different in each
phase. In using these equations to solve multireaction problems, again only a
set of independent reactions should be used.

It can also be shown that precisely the same conditions for chemical and
phase equilibrium are obtained in a system subject to constraints other than con-
stant temperature and pressure, for example, constant temperature and volume.

19. Fugacity of a Species in a Mixture

To compute the equilibrium compositions of the coexisting phases, it is necessary
to replace the equality of partial molar Gibbs energies with relations among tem-
perature, pressure, and composition. In fact, the partial molar Gibbs energy is
not a convenient function to use because as a species becomes very dilute (ie,
xi ! 0), �GGi ! �1. A more well-behaved quantity is the fugacity of a species in
a mixture, �ff iðT;P; xÞ, which in analogy with the pure fluid is defined as

�GGiðP;T; xÞ ¼ �GG
IGM

i ðP;T; xÞ þ RT ln
�ffiðT;P; xÞ

P

or equivalently

�mmiðP;T; xÞ ¼ �mmIGM
i ðP;T; xÞ þ RT ln

�ff iðT;P; xÞ
P

ð159Þ

The following expression can be used to compute the fugacity of a species in a
mixture:

�ffiðT;P; xÞ ¼ xiP exp
�GGiðT;P; xÞ � �GG

IGM

i ðT;P; xÞ
RT

" #

¼ xiP exp
�GGiðT;P; xÞ � �GG

IM

i ðT;P; xÞ þ �GG
IM

i ðT;P; xÞ � �GG
IGM

i ðT;PÞ
RT

" #

¼ xiP exp
�GGiðT;P; xÞ � �GG

IM

i ðT;P; xÞ þGiðT;P; xÞ �GIG
i ðT;PÞ

RT

" #

¼ xi fiðT;PÞ exp
�GGiðT;P; xÞ �GIM

i ðT;PÞ
RT

" #
¼ xi fiðT;PÞ exp

�GG
ex

i ðT;P; xÞ
RT

" #

ð160Þ
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where fiðT;PÞ is the fugacity of pure species i defined earlier. The activity coeffi-
cient of a species in a mixture gi is defined to be

giðT;P; xÞ ¼ exp
�GG
ex

i ðT;P; xÞ
RT

" #
ð161Þ

With this definition, the fugacity of a species in a liquid mixture is

�ff L
i ðT;P; xÞ ¼ xigiðT;P; xÞ fiðT;PÞ ð162Þ

The analogous expression for the partial molar Gibbs energy is

�GGiðT;P; xÞ ¼ GiðT;PÞ þ RT lnðxigiÞ ð163Þ

and more generally for any mixture (vapor or liquid)

�GGiðT;P; xÞ ¼ GiðT;PÞ þ RT ln
�ff iðT;P; xÞ
fiðT;PÞ

¼ Gi þ RT lnaiðT;P; xÞ ð164Þ

where

aiðT;P; xÞ ¼
�ff iðT;P; xÞ
fiðT;PÞ

ð165Þ

is referred to as the activity of species i. If the vapor pressure of the pure liquid
and the total pressure are not too high, the fugacity of a species in a liquid mix-
ture is

�ff
L

i ðT;P; xÞ ¼ xigiðT;P; xÞP
vap
i ðTÞ and aL

i ðT;P; xÞ ¼ xigiðT;P; xÞ ð166Þ

In the simple case of an ideal mixture,

�ff L
i ðT;P; xÞ ¼ xi fiðT;PÞ and aiðT;P; xÞ ¼ xi ð167Þ

This is the Lewis–Randall rule.
An important property of the fugacity is that when used in equation 153,

the condition for equilibrium becomes

�ff Ii ðT;P; xIÞ ¼ �ff IIi ðT;P; xIIÞ for each species i ð168Þ

If a mixture equation of state is available, the fugacity of a species in a mixture
can be computed from

ln
�ff iðT;P; xÞ

xiP
¼ ln �ffiðT;P; xÞ ¼

1

RT

ZV¼ZRT=P

V¼1

RT

V
�N

qP
qNi

� �
T;V ;Nj 6¼ i

" #
dV � lnZðT;P; xÞ

ð169Þ
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where �ffiðT;P; xÞ is the fugacity coefficient for species i in the mixture. If an equa-
tion of state is not available, then equation 162 is used with the partial molar
excess Gibbs energy calculated from a model with parameters that have been
fitted to some experimental data (see, for example, the models in Refs. 10 and
11), have been estimated, for example, using a group contribution model such
as UNIFAC (12,13); or more recently have been estimated from quantum
mechanics (14). A very simple excess Gibbs energy model for a binary mixture
is GexðT;P; xÞ ¼ �x1x2, which satisfies the boundary conditions that in the pure
component limits (ie, x1 ! 1 or x2 ! 1), the excess Gibbs energy is zero. With
this model, we have

�GG
ex

1 ðT;P; xÞ ¼ qðNGexÞ
qN1

� �
T;P;N2

¼ �
qNx1x2
qN1

� �
T;P;N2

¼ �
q

qN1

N1N2

N1 þN2

� �
T;P;N2

¼ �
N2

2

ðN1 þN2Þ2
¼ �x22 ¼ �ð1� x1Þ2

ð170Þ

So that

ln g1ðT;P; xÞ ¼
�x22
RT

¼ �ð1� x1Þ2

RT

and similarly

ln g2ðT;P; xÞ ¼
�x21
RT

¼ �ð1� x2Þ2

RT
ð171Þ

There are many more complex and accurate models for the excess Gibbs energy
and activity coefficients of mixtures discussed elsewhere (1,10,11). These include
the Van Laar, Wilson, NRTL, UNIQUAC, and other models.

20. Types of Mixture Phase Equilibrium Calculations

Below is a list of the common types of phase equilibrium calculations.

1. Bubble point calculation: The composition of a liquid is fixed, and either the
temperature is increased at fixed pressure or the pressure is decreased at
fixed temperature until the first infinitesimal bubble of vapor is formed. In
this case, one wants the composition of the equilibrium vapor and the bub-
ble point temperature (if pressure is fixed) or bubble point pressure (if tem-
perature is fixed).

2. Dew point calculation: The composition of a vapor is fixed, and either the
temperature is decreased at fixed pressure or the pressure is increased at
fixed temperature until the first infinitesimal drop of liquid (dew) is formed.
Here one wants the composition of the equilibrium liquid and the dew point
temperature (if pressure is fixed) or dew point pressure (if temperature is
fixed).
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3. Flash calculation: A liquid of known initial composition undergoes a
change in pressure and/or temperature, so a significant amount of vapor
is formed, but the liquid is not completely vaporized. Here one wants to
know the amounts of vapor and liquid present, and the compositions of va-
por and liquid phases at a specified temperature and pressure.

4. Adiabatic flash calculation: A liquid of known initial composition, tempera-
ture, and pressure undergoes an adiabatic change in pressure, for example,
as a result of a Joule–Thomson expansion through a pressure-reducing
valve, to a specified final pressure, so that a significant amount of vapor
is formed, but the liquid is not completely vaporized. Here one wants to
know the final temperature, the amounts of vapor and liquid formed, and
the compositions of vapor and liquid phases.

5. Liquid–liquid equilibrium: Two liquids of limited mutual solubility are
mixed. Here one wants to know the amounts and equilibrium compositions
of the two liquid phases at a specified temperature.

6. Vapor–liquid–liquid equilibrium: Two liquids of limited mutual solubility
are mixed and the temperature and/or pressure varied to result in the for-
mation of some vapor. Here one wants to know the amounts and equili-
brium compositions of the two liquid phases and the vapor at a specified
temperature and pressure.

Other types of phase equilibrium calculations include the solubility of a gas
in a liquid, solid–liquid and solid–liquid–liquid equilibrium, and the freezing
point depression of a liquid due to the presence of a solute. The important
point is that these phase equilibrium calculations are based on equation 142,
the equality of the partial molar Gibbs energies (or chemical potentials) of
each species in each phase, or equivalently (and more conveniently), on
equation 156, the equality of the fugacities of each species in each phase.

21. The Gibbs Phase Rule

To fix the thermodynamic state of a single phase of a pure component, it has been
found from experiments that two independent state variables, such as pressure
and temperature, are needed. Then the values of all other properties, such as the
molar volume, molar enthalpy, and molar entropy, are fixed. To fix the properties
of a single phase of a C-component mixture, two independent state variables
must be fixed, as well as C-1 mole fractions (the remaining mole fraction is not
independent because the mole fractions must sum to unity). That is, to fix the
thermodynamic state of a single-phase C component mixture, a total of Cþ 1
independent state variables must be specified.

For an equilibrium system of P phases and M independent chemical reac-
tions, it might appear that P(C þ 1) properties need to be specified to fix all its
properties. However, the temperature must be equal in all phases,
TI ¼ TII ¼ . . . ¼ TP, so that fixing the temperature in one phase fixes the tem-
perature in the remaining P� 1 phases and reduces the number of variables
that must be specified, or the number of degrees of freedom, by P� 1. Similarly,
that the pressure must be the same in all phases PI ¼ PII ¼ . . . ¼ PP reduces the

Vol. 24 THERMODYNAMICS 681



number of degrees of freedom by an additional P� 1. As for each C species
its fugacity must be the same in each phase, �ff I

i ðT;P; xIÞ ¼ �ff
II

i ðT;P; xIIÞ ¼
. . . ¼ �ff

P

i ðT;P; xPÞ further reduces the number of degrees of freedom by C(P � 1).
Finally, if there are M independent chemical reactions, the condition for
chemical equilibrium of equation 157

PC
i¼1ni j

�GGiðT;P; xÞ ¼ 0 for each of the M
independent reactions places additional M restrictions on the variables and
reduces the degrees of freedom by that number. Therefore, in a C-component sys-
tem of P phases in which M independent chemical reactions occur, the actual
number of degrees of freedom is

Degrees of freedom ¼ PðCþ 1Þ � ðP� 1Þ � ðP� 1Þ � CðP� 1Þ �M

¼ C� P�Mþ 2
ð172Þ

This relation is known as the Gibbs phase rule. It is useful in determining
how many state variables are needed to fix the properties of a mixture and, con-
sequently, to determine whether enough information has been provided to solve
a problem. For example, from the Gibbs phase rule, we find that to fix the proper-
ties of a single-phase, binary mixture in which there are no chemical reactions, 2
� 1 � 0 þ2 ¼ 3 properties are needed, such as temperature, pressure, and the
mole fraction of one species. However, if two phases are present (for example,
a vapor and a liquid), the system has only 2 � 2 � 0 þ 2 ¼ 2 degrees of freedom.
In this case, fixing the temperature and the mole fraction of one phase is suffi-
cient to determine the equilibrium pressure and mole fraction of the remaining
phase, or fixing the temperature and pressure fixes the mole fractions of both
phases. How to determine these compositions is discussed below. If three phases
(e.g., liquid–liquid–vapor) are present at equilibrium, the system has only 2 � 3
� 0 þ 2 ¼ 1 degrees of freedom. That is, if the temperature, the pressure, or the
mole fraction in one phase is specified, the values of all other state variables can,
in principle, be determined.

22. Vapor–Liquid Equilibrium Calculations

In the chemical industry, the phase equilibrium calculations needed are fre-
quently at low-to-moderate pressures for mixtures for which an equation of
state is not available, for example, aqueous solutions and/or mixtures containing
organic acids, alcohols, and other polar compounds. At low pressures, the vapor
phase can frequently be considered an ideal gas mixture, so that denoting the
vapor compositions by yi,

�ff V
i ðT;P; yÞ ¼ yiP ð173Þ

For the liquid phase at low pressure,

�ff L
i ðT;P; xÞ ¼ xigiðT;P; xÞP

vap
i ðTÞ ð174Þ

so that at equilibrium

xigiðT;P; xÞP
vap
i ðTÞ ¼ yiP ð175Þ
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where because the vapor-phase mole fraction must sum to one, the equilibrium
pressure is

XC
i¼1

xigiðT;P; xÞP
vap
i ðTÞ ¼ P

XC
i¼1

yi ¼ P ð176Þ

For the case of an ideal mixture (Gex ¼ 0 and therefore all gi ¼ 1), these equa-
tions reduce to

yi ¼
xiðT;P; xÞPvap

i ðTÞ
P

and P ¼
XC
i¼1

xiP
vap
i ðTÞ ð177Þ

which indicates the equilibrium pressure in a linear function of a mole fraction.
This is referred to as Raoult’s law, and equation 176 is the modified Raoult’s law.
An example of the vapor–liquid equilibrium in a mixture that is almost ideal is
shown in Figure 8, which shows the total pressure as a function of both the vapor
and the liquid compositions at fixed temperature. Note that the total pressure is
a linear function of liquid composition. Also one of many tie lines, that is, lines of
constant pressure connecting the equilibrium vapor and liquid compositions, has
been drawn.

Most mixtures are not ideal, so that the composition-dependent acti-
vity coefficients are not unity and the equilibrium pressure is not a linear
function of liquid mole fraction; examples are shown in Figures 9 and 10. An
interesting feature of Figure 10 is that the equilibrium pressure at fixed
temperature has a maximum at a function of composition. It can easily be
shown that at the composition at which this occurs, the vapor and liquid
compositions are identical. These are referred to as the azeotropic point and
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Fig. 8. P - x - y vapor–liquid equilibrium diagram of an ideal mixture: n-pentane + n-
heptane at 508C. One tie line connecting the compositions of the coexisting vapor and
liquid phases is shown. Adapted from Ref. 2, with permission.
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the azeotropic composition. There are also azeotropes in which the equili-
brium pressure at fixed temperature is a minimum, although those are some-
what less common. Data such as those in these figures are easily correlated
using one of the excess Gibbs energy or activity coefficient models mentioned
earlier.
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Fig. 9. P - x - y vapor–liquid equilibrium diagram of a slightly nonideal mixture: benzene
+ n-heptane at 458C. One tie line connecting the compositions of the coexisting vapor and
liquid phases is shown. Adapted from Ref. 2, with permission.
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are shown. Adapted from Ref. 2, with permission.
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In the fuels and petrochemical industries, processing at high pressures
occurs, but generally it only involves hydrocarbons, inorganic gases (ie, oxygen,
nitrogen, etc), and other relatively nonpolar species. In such cases, it is common
to use an equation of state for mixtures that is applicable to both the vapor and
the liquid phases, such as the Peng–Robinson equation:

P ¼ RT

V � bmix
� amixðTÞ
VðV þ bmixÞ þ bmixðV � bmixÞ

ð178Þ

The parameters in these (and related) equations of state for mixtures are gener-
ally obtained from the pure component equation-of-state parameters using the
van der Waals one-fluid mixing rules:

amixðT; xÞ ¼
XC
i¼1

XC
j¼1

xix jai jðTÞ and bmixðxÞ ¼
XC
i¼1

XC
j¼1

xix jbi j ð179Þ

and the combining rules:

ai jðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
aiia j j

p ð1� ki jÞ and bi j ¼
1

2
ðbii þ bj jÞ so that bðxÞ ¼

XC
i¼1

xibii ð180Þ

In these equations, aii and bii are pure component properties and kij is the
binary interaction parameter chosen to best fit the experimental data. The
resulting equations for the fugacity of each species can be found elsewhere.

When an equation of state is used for both the vapor and the liquid phases,
the phase equilibrium calculation involves solving the equations

�ff L
i ðT;P; xÞ ¼ �ff V

i ðT;P; yÞ usually in the form xi�ff
L
i ðT;P; xÞ ¼ yi�ff

V
i ðT;P; yÞ

ð181Þ

for each component in the mixture. This is done by iteration. As an example, a
bubble point pressure calculation at fixed temperature using an equation of
state proceeds as follows. The pressure is guessed, and the fugacity of each
species in the liquid is computed using the known composition. Next, the
composition of the vapor is guessed, and these guessed compositions are
used to calculate the fugacity of each species in the vapor and compared
with the liquid fugacities. An iterative procedure on both pressure and compo-
sition is then used to adjust the pressure and vapor compositions until the
fugacity of each species is the same in both phases. Figure 11 is an example
of the results of the correlation of high-pressure vapor–liquid equilibrium
data obtained using the Peng–Robinson equation of state, the mixing rules
above, and adjusting the binary interaction parameter kij to fit the experimen-
tal data.
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23. Liquid–Liquid Equilibrium and Vapor–Liquid–Liquid
Equilibrium Calculations

Mixtures that form two liquids generally contain components that are best
described by activity coefficients. In this case, the equations to be solved are

�ff I
iðT;P; xIÞ ¼ �ff II

i ðT;P; xIIÞ for each species i ð182Þ

which reduces to

xIig
I
iðT;P; xIÞ ¼ xIIi g

II
i ðT;P; xIIÞ for each species i ð183Þ

because the pure component fugacities cancel from both sides of the equation.
This equation together with the restrictions that

XC
i¼1

xIi ¼ 1 and
XC
i¼1

xIIi ¼ 1 ð184Þ

are solved by iteration based on some initial guesses.
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Fig. 11. Vapor–liquid equilibrium of the carbon dioxide (1)-isopentane (2) system. The
experimental data of G. J. Besserer and D. B. Robinson [J. Chem. Eng. Data 20, 93 (1976)]
are shown at 277.59 K (! liquid and ~ vapor) and 377.65 K (. liquid and & vapor). The
dashed curves are the predictions using the Peng–Robinson equation of state and the van
der Waals mixing rule with k12 ¼ 0, and the solid lines are the correlation using the same
equation of state with k12 ¼ 0.121. The points * and & are the estimated mixture critical
points at 377.65 K using the same equation of state with k12 ¼ 0 and 0.121, respectively.
Adapted from Ref. 2, with permission.
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The starting point for vapor–liquid–liquid calculations is

�ff I
i ðT;P; xIÞ ¼ �ff II

i ðT;P; xIIÞ ¼ �ff V
i ðT;P; yÞ for each species i ð185Þ

At low-to-moderate pressures, this becomes

xIig
I
iðT;P; xIÞP

vap
i ðTÞ ¼ xIIi g

II
i ðT;P; xIIÞP

vap
i ðTÞ ¼ yiP ð186Þ

which is solved together with the constraints that

XC
i¼1

xIi ¼ 1;
XC
i¼1

xIIi ¼ 1 and
XC
i¼1

yi ¼ 1 ð187Þ

One difficulty in all phase equilibrium calculations is determining how
many phases, and which phases, are present at equilibrium. For example, in a
mixture of water and an organic compound at a given temperature, pressure,
and overall composition, the equilibrium state might be a vapor, a single liquid,
a vapor–liquid mixture, two liquids, or a vapor–liquid–liquid mixture. It is only
by testing for these possibilities and determining the state with the minimum
total Gibbs energy that the true equilibrium state is determined. Not considering
all possibilities can give an incorrect answer.

24. Chemical Equilibrium Calculations

For a pure substance, any convenient state can be chosen as the basis for prepar-
ing thermodynamic properties charts, and different states can be chosen for dif-
ferent substances. However, for reacting mixtures, the reference states for
thermodynamic properties must be chosen with care. In particular, in the reactor
analysis discussed, the enthalpy of each substance cannot be set arbitrarily, but
it must be chosen relative to the others to give the correct heat of reaction and
the correct equilibrium constant. Consequently, the reference states for all sub-
stances must be chosen in a consistent manner. This is accomplished by choosing
a reference state for each type of atom, not for each molecule. The common choice
is that both the enthalpy and the Gibbs energy for each atomic species is set to
zero at 258C and 1 bar in its simplest pure stable state. Thus, for oxygen, the
stable state is as O2 gas; for mercury, it is as a liquid; for carbon, it is solid gra-
phite, and so on. The enthalpy of any other substance, referred to as its enthalpy
or heat of formation and designated by the symbol � fH, is the heat of reaction to
form that species for its constituent atoms in their reference states. Thus, the
heat of formation of gaseous nitric acid is the heat of reaction for its formation
from gaseous N2, O2, and H2, and the heat of formation of gaseous carbon dioxide
is the heat of reaction for burning solid graphite in O2.

A standard state for each molecule is then chosen to be the pure component
(for gases as an ideal gas, and as the pure liquid or solid for a condensed phase) at
the reaction temperature T and a standard state pressure Po. However, in some
cases, for example, an electrolyte or a dissolved gas, the standard state can be a
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(hypothetical) ideal aqueous solution of a fixed composition. Thermodynamic
properties are then computed with respect to this standard state. Thus,

�GGiðT;P; xÞ ¼ Go
i ðT;PoÞ þRT ln

�ff iðT;P; xÞ
fiðT;PoÞ ¼ Go

i ðT;PoÞ þ RT lnaiðT;P;Po; xÞ

ð188Þ

where Go
i ðT;PoÞ is the Gibbs energy of species i in its standard state, and the

standard-state heat (enthalpy change) on reaction is computed from the heats
of formation as

�rxnH
oðT;PoÞ ¼

XC
i¼1

ni� fH
o
i ðT;PoÞ ð189Þ

The standard-state enthalpies and Gibbs energies of formation are reported
in tables, at Po = 1 bar but only at 258C. The standard-state heat of reaction at
any other temperature is

�rxnH
o
i ðT;PoÞ ¼ �rxnH

o
i ðT ¼ 25�C;PoÞ þ

ZT
25�C

�rxnC
o
PðTÞdT ð190Þ

where �rxnC
o
P is the difference in the heat capacities of the products and reac-

tants in their standard states. If �rxnC
o
P is independent of temperature,

�rxnH
oðT;PoÞ ¼ �rxnH

oðT ¼ 25�C;PoÞ þ�rxnC
o
P � ðT � 25�CÞ ð191Þ

For the Gibbs energy, using equation 38,

qð�rxnG
oðT;PoÞ=TÞ
qT

� �
P

¼ ��rxnH
oðT;PoÞ
T2

ð192Þ

For chemical equilibrium in a single-reaction system starting from the
criterion of equation 156 and using equation 188:

XC
i¼1

niG
o
i ðT;PoÞ ¼�rxnG

oðT;PoÞ ¼ �RT
XC
i¼1

ni ln
�ff iðT;P;xÞ
fiðT;PoÞ

� �
¼�RT

XC
i¼1

ln
�ff iðT;P;xÞ
fiðT;PoÞ

� �ni

¼�RT ln
YC
i¼1

�ff iðT;P;xÞ
fiðT;PoÞ

� �ni
¼�RT ln

YC
i¼1

ani
i ðT;P;P

o;xÞ

ð193Þ

or

KeqðTÞ ¼ exp ��rxnG
oðT;PoÞ
RT

� �
¼
YC
i¼1

ani
i ðT;P;P

o; xÞ ð194Þ
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where Keq is the equilibrium constant. Its value depends on temperature and the
difference between the molar Gibbs energies of the products and the reactants in
their standard states, but not on pressure. The starting point for calculating the
temperature dependence of an equilibrium constant is

d lnKeqðTÞ
dT

¼ dð�rxnG
oðT;PoÞ=RT2Þ
dT

¼ ��rxnH
oðT;PoÞ

RT2
ð195Þ

If �rxnH
oðT;PoÞ is independent of temperature, then

ln
KeqðTÞ

KeqðT ¼ 25�CÞ ¼ ��rxnH
o

R

1

T
� 1

298:15

� �
ð196Þ

If it is not independent of temperature, then

ln
KeqðTÞ

KeqðT ¼ 25�CÞ ¼
ZT

T¼298:15

�rxnH
oðT;PoÞ

RT2
dT ð197Þ

As an example, consider the reaction of hydrogen and oxygen to form water
(perhaps in a fuel cell). The reaction is written as

H2 þ
1

2
O2 >H2O so that nH2

¼ �1; nH2
¼ � 1

2
; and nH2O ¼ 1 ð198Þ

If the reaction pressure is not very high, and recognizing that the standard states
are pure components at 1 bar so that

aiðT;P;Po; yÞ ¼
�ff iðT;P; yÞ
fiðT;PoÞ ¼ yiP

Po
ð199Þ

then

KeqðTÞ ¼
YC
i¼1

ani
i ðT;P;P

o; yÞ ¼
yH2Oð PPoÞ

yH2

P

Po

� �
yO2

P

Po

� �� �1
2

¼ yH2O

yH2
y

1
2

O2

Po

P

� �1
2

ð200Þ

where yi is a gas-phase mole fraction. Note that all mole fractions are also related
to the stoichiometry of the chemical reaction, so finding for the equilibrium com-
position involves the simultaneous solution of the equilibrium relation and the
mass balances.

Similarly for the reaction of burning carbon for carbon dioxide,

CþO2 >CO2 for which nC ¼ �1; nO2
¼ �1; and nCO2

¼ 1
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KeqðTÞ ¼
aCO2

aCaO2

¼
yCO2

P

Po

� �

yO2

P

Po

� � ¼ yCO2

yO2

ð201Þ

as the activity of solid carbon is unity, because it is pure and the fugacity of solids
(and liquids) are very weak functions of pressure, which we neglect here (that is,
we are assuming the pressure is not very high so that the Poynting correction
can be neglected). The final example is the liquid-phase reaction:

CH3COOHþ CH3OH>CH3COOC2H5 þH2O

for which

KeqðTÞ ¼ aCH3COOCH3
aH2O

aCH3COOHaCH3OH
¼

xCH3COOCH3
gCH3COOCH3

xH2OgH2O

xCH3COOHgCH3COOHxCH3OHgCH3OH

¼ xCH3COOCH3
xH2O

xCH3COOHxCH3OH
�

gCH3COOCH3
gH2O

gCH3COOHgCH3OH

¼ Kx � Kg

ð202Þ

where each activity coefficient is a function of the compositions of all species in
the mixture.

Each of these chemical equilibrium relations must be solved together with
the constraints on the compositions as a result of the mass balance for each spe-
cies of equation 111 and the initial mole numbers. Also, if several chemical reac-
tions occur, then the combination of all chemical equilibrium relations and the
mass balances must be solved simultaneously.

25. Maximum Work Obtainable (or Minimum Work Required)
for a Change of State Involving Mixtures

Consider the work-producing device based on chemical reaction schematically
shown in Fig. 12. This device could be a fuel cell, a coal-fired steam power
plant, or some other device. The steady-state mass (mole), energy, and entropy

Ni,in

Tq

W Q

Tin

Pin

Ni,out

Tout

Pout

Reactor, Fuel cell, or
Electrolytic cell

Fig. 12. Schematic diagram of a fuel cell, reactor, electrolytic cell, or other device. Fuel
cells and reactors generally deliver work to the surroundings (W < 0), whereas for electro-
lytic cells W < 0 for a battery, while, work is required (in the form of electrical energy)
W > 0 for an electrolysis cell.

690 THERMODYNAMICS Vol. 24



balances for this system at constant temperature and constant volume are as
follows:

dNi

dt
¼ 0 ¼ Ni;in �Ni;out þ ni

dX

dt
or Ni;out ¼ Ni;in þ ni

dX

dt
ð203Þ

dðNUÞ
dt

¼ 0 ¼
XC
i¼1

Ni;in
�HHiðTin;Pin; xinÞ �

XC
i¼1

Ni;out
�HHiðTout;Pout; xoutÞ þ _WW þ _QQ ð204Þ

and

dðNSÞ
dt

¼ 0 ¼
XC
i¼1

Ni;in
�SSiðTin;Pin; xinÞ �

XC
i¼1

Ni;out
�SSiðTout;Pout; xoutÞ þ

_QQ

Tq
þ S

:

gen

ð205Þ

Solving for the _QQ and combining the energy and entropy balances gives

� _WW ¼
XC
i¼1

_NNi;in½ �HHiðTin;Pin; xinÞ � Tq
�SSiðTin;Pin; xinÞ�

�
XC
i¼1

_NNi;out½ �HHiðTout;Pout; xoutÞ � Tq
�SSiðTout;Pout; xoutÞ� � TqS

:

gen

¼
XC
i¼1

_NNi;in½ �HHiðTin;Pin; xinÞ � Tq
�SSiðTin;Pin; xinÞ�

�
XC
i¼1

ð _NNi;in þ ni
dX

dt
Þ½ �HHiðTout;Pout; xoutÞ � Tq

�SSiðTout;Pout; xoutÞ� � TqS
:

gen

¼
XC
i¼1

_NNi;inf½ �HHiðTin;Pin; xinÞ � Tq
�SSiðTin;Pin; xinÞ� � ½ �HHiðTout;Pout; xoutÞ

�Tq
�SSiðTout;Pout; xoutÞ�g

�dX

dt

XC
i¼1

ni½ �HHiðTout;Pout; xoutÞ � Tq
�SSiðTout;Pout; xoutÞ� � TqS

:

gen

ð206Þ

Note that the terms in brackets are not partial molar Gibbs energies unless the
temperature at which heat transfer occurs Tq is also the temperature of the flow
stream.

The maximum work attainable from the system for a given feed stream, or
the minimum work required to produce a given change of state, occurs when the
process occurs reversibly, that is, S

:

gen ¼ 0, when the temperatures for heat
transfer and of the exiting stream are both at the ambient temperature Tamb,
when the pressure of the exit stream is ambient (otherwise the potential to
obtain useful work will be lost), and when the exiting stream is in chemical
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equilibrium so that the reaction term vanishes. In that case,

� _WW
max¼

XC
i¼1

_NNi;inf½ �HHi;inðTin;Pin; xinÞ�Tamb
�SSi;inðTin;Pin; xinÞ�� �GGi;outðTamb;Pamb; xoutÞg

¼
XC
i¼1

_NNi;inf½ �GGi;inðTin;Pin; xin;TambÞ� � �GGi;outðTamb;Pamb; xoutÞg ð207Þ

where �GGi;inðTin;Pin; xin;TambÞ ¼ �HHi;inðTin;Pin; xinÞ � Tamb
�SSi;inðTin;Pin; xinÞ is the

partial molar availability of species i in the inlet stream. Note that its value
depends on both the temperature of the inlet stream and the ambient tempera-
ture (so it is not a partial molar Gibbs energy).

This equation is applicable to all work-producing devices that involve che-
mical reaction, including fuel cells. It is also applicable to biochemical processes
and bioreactors, but there the complication that arises is determining the proper-
ties of the biochemical species.

26. Nomenclature

(Note that symbols that are only used once, for example, in an illustrative equa-
tion of state, are not shown.)

Symbol Definition Units

a parameter in heat capacity equation J/(mol K)
a equation of state parameter various
a activity (sections 19, 24, 25 )
A (A) Helmholtz energy (per mole) J (J/mol)
�AAi partial molar Helmholtz energy of

species i in a mixture
J/mol

b parameter in heat capacity equation J/(mol K2)
b equation of state parameter m3/mol
B second virial coefficient m3/mol
d parameter in heat capacity equation J/(mol K3)
C third virial coefficient m6/mol
C number of components in a mixture
CP constant pressure heat capacity J/(mol K)
CV constant volume hear capacity J/(mol K)
C.O.P. coefficient of performance
d parameter in heat capacity equation J/(mol K4)
D fourth virial coefficient m9/mol
f fugacity kPa
�ff i fugacity of species i in a mixture kPa
G (G) Gibbs energy (per mole) J (J/mol)
�GGi partial molar Gibbs energy of

species i in a mixture
J/mol

G flow availability per mole J/mol
H (H) enthalpy (per mole) J (J/mol)
�HHi partial molar enthalpy of species i in a mixture J/mol
I stoichiometric chemical formula
Keq equilibrium constant
Kx mole fraction ratio at chemical equilibrium
Kg activity coefficient ratio at chemical equilibrium
kij binary interaction parameter
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m molecular weight g/mol
M number of independent reactions
Ni moles of species i mol
_NN j molar flow rate at entry point j mol/s
_NNi; j molar flow rate of species i at entry point j mol/s
P absolute pressure kPa
P number of phases
Pvap vapor pressure kPa
Pc critical pressure kPa
Q heat J
_QQ heat flow rate J/s
R gas constant J/(mol K)
S (S) entropy (per mole) J/mol (J/mol K)
�SSi partial molar entropy of species i in a mixture J/(mol K)
t time s
T absolute temperature K
Tc critical temperature K
U (U) internal energy (per mole) J (J/mol)
U
¯
i partial molar internal energy of

species i in a mixture
J/mol

v velocity m/s
V (V) volume (per mole) m3 (m3/mol)
�VVi partial molar volume of species i in a mixture m3/mol
W work J
_WW rate at which work is done J/s
xi mole fraction of species i in liquid
x set of mole fractions x1, x2, etc
yi mole fraction of species i in vapor
y set of mole fractions y1, y2, etc

Z compressibility factor

Superscripts
ID ideal mixture
IG ideal gas
IGM ideal gas mixture
ex excess property
I, II phase identifier
L liquid phase
max maximum attainable
o standard state
V vapor phase
vap vapor pressure

Subscripts
i species identifier
in inlet stream
c critical property
H high-temperature heat reservoir
gen indicating generation within the system
L low-temperature heat reservoir
rxn reaction
out outlet stream
1,2,C species identifiers

Greek Letters
a,b,r. . . reaction stoichiometric coefficients

Symbol Definition Units
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