electrical conductivity

Electrical conductivity or specific conductivity is a measure of a material’s ability to conduct an electric current. When an electrical potential difference is placed across a conductor, its movable charges flow, giving rise to an electric current. The conductivity σ is defined as the ratio of the current density \mathbf{J} to the electric field strength \mathbf{E}:

\mathbf{J} = \sigma \mathbf{E}.

It is also possible to have materials in which the conductivity is anisotropic, in which case σ is a 3×3 matrix (or more technically a rank-2 tensor) which is generally symmetric.

Conductivity is the reciprocal (inverse) of electrical resistivity and has the SI units of siemens per metre (S·m-1) i.e. if the electrical conductance between opposite faces of a 1-metre cube of material is 1 siemens then the material’s electrical conductivity is 1 siemens per metre. Electrical conductivity is commonly represented by the Greek letter σ, but κ or γ are also occasionally used.

Also:

For a device with electrical resistance R, the conductance G is defined as

G = \frac1R = \frac{I}V,

where

The unit siemens for the conductance G is defined by 1 S = 1 A/V = 1 A2/W = 1 kg−1·m−2·s3·A2 =1 Ω-1 = 1 kg−1·m−2·s1·C2. So for a device with conductance 1 S, then the current through it with a 1 V voltage across it is 1 A, and for each extra V of voltage across it the current through it increases by 1 A.

Some tricks:

conductivity (S m−1) = specific conductance (S)

resistance (Ω m−1) = specific resistance (Ω)