Electrical conductivity or specific conductivity is a measure of a material’s ability to conduct an electric current. When an electrical potential difference is placed across a conductor, its movable charges flow, giving rise to an electric current. The conductivity σ is defined as the ratio of the current density to the electric field strength :
- .
It is also possible to have materials in which the conductivity is anisotropic, in which case σ is a 3×3 matrix (or more technically a rank-2 tensor) which is generally symmetric.
Conductivity is the reciprocal (inverse) of electrical resistivity and has the SI units of siemens per metre (S·m-1) i.e. if the electrical conductance between opposite faces of a 1-metre cube of material is 1 siemens then the material’s electrical conductivity is 1 siemens per metre. Electrical conductivity is commonly represented by the Greek letter σ, but κ or γ are also occasionally used.
Also:
For a device with electrical resistance R, the conductance G is defined as
where
- G is the conductance,
- R is the resistance,
- I is the current through the device and
- V is the voltage (electrical potential difference) across the device.
The unit siemens for the conductance G is defined by 1 S = 1 A/V = 1 A2/W = 1 kg−1·m−2·s3·A2 =1 Ω-1 = 1 kg−1·m−2·s1·C2. So for a device with conductance 1 S, then the current through it with a 1 V voltage across it is 1 A, and for each extra V of voltage across it the current through it increases by 1 A.
Some tricks:
conductivity (S m−1) = specific conductance (S)
resistance (Ω m−1) = specific resistance (Ω)